我有一个带有一组不同值的熊猫数据框,例如第一个是列表或数组以及其他元素
>>> df_3['integration-outbound:IntegrationEntity.integrationEntityDetails.supplier.forms.form.records.record']
0 [{'Internalid': '24348', 'isDelete': 'false', 'fields': {'field': [{'id': 'CATEGOR_LEVEL_1', 'value': 'MR'}, {'id': 'LOW_PRODSERV', 'value': 'RES'}, {'id': 'LOW_LEVEL_2', 'value': 'keylevel221'}, {'id': 'LOW_LEVEL_3', 'value': 'keylevel3127'}, {'id': 'LOW_LEVEL_4', 'value': 'keylevel4434'}, {'id': 'LOW_LEVEL_5', 'value': 'keylevel5545'}]}}, {'Internalid': '24349', 'isDelete': 'false', 'fields': {'field': [{'id': 'CATEGOR_LEVEL_1', 'value': 'MR'}, {'id': 'LOW_PRODSERV', 'value': 'RES'}, {'id': 'LOW_LEVEL_2', 'value': 'keylevel221'}, {'id': 'LOW_LEVEL_3', 'value': 'keylevel3125'}, {'id': 'LOW_LEVEL_4', 'value': 'keylevel4268'}, {'id': 'LOW_LEVEL_5', 'value': 'keylevel5418'}]}}, {'Internalid': '24350', 'isDelete': 'false', 'fields': {'field': [{'id': 'CATEGOR_LEVEL_1', 'value': 'MR'}, {'id': 'LOW_PRODSERV', 'value': 'RES'}, {'id': 'LOW_LEVEL_2', 'value': 'keylevel221'}, {'id': 'LOW_LEVEL_3', 'value': 'keylevel3122'}, {'id': 'LOW_LEVEL_4', 'value': 'keylevel425'}, {'id': 'LOW_LEVEL_5', 'value': 'keylevel5221'}]}}]
0 {'isDelete': 'false', 'fields': {'field': [{'id': 'S_EAST', 'value': 'N'}, {'id': 'W_EST', 'value': 'N'}, {'id': 'M_WEST', 'value': 'N'}, {'id': 'N_EAST', 'value': 'N'}, {'id': 'LOW_AREYOU_ASSET', 'value': '-1'}, {'id': 'LOW_SWART_PROG', 'value': '-1'}]}}
0 {'isDelete': 'false', 'fields': {'field': {'id': 'LOW_COD_CONDUCT', 'value': '-1'}}}
0 {'isDelete': 'false', 'fields': {'field': [{'id': 'LOW_SUPPLIER_TYPE', 'value': '2'}, {'id': 'LOW_DO_INT_BOTH', 'value': '1'}]}}
我想将其爆炸成多行。第一行是列表,其他行还是不是?
>>> type(df_3)
<class 'pandas.core.frame.DataFrame'>
>>> type(df_3['integration-outbound:IntegrationEntity.integrationEntityDetails.supplier.forms.form.records.record'])
<class 'pandas.core.series.Series'>
预期输出-
{'Internalid': '24348', 'isDelete': 'false', 'fields': {'field': [{'id': 'CATEGOR_LEVEL_1', 'value': 'MR'}, {'id': 'LOW_PRODSERV', 'value': 'RES'}, {'id': 'LOW_LEVEL_2', 'value': 'keylevel221'}, {'id': 'LOW_LEVEL_3', 'value': 'keylevel3127'}, {'id': 'LOW_LEVEL_4', 'value': 'keylevel4434'}, {'id': 'LOW_LEVEL_5', 'value': 'keylevel5545'}]}}
{'Internalid': '24349', 'isDelete': 'false', 'fields': {'field': [{'id': 'CATEGOR_LEVEL_1', 'value': 'MR'}, {'id': 'LOW_PRODSERV', 'value': 'RES'}, {'id': 'LOW_LEVEL_2', 'value': 'keylevel221'}, {'id': 'LOW_LEVEL_3', 'value': 'keylevel3125'}, {'id': 'LOW_LEVEL_4', 'value': 'keylevel4268'}, {'id': 'LOW_LEVEL_5', 'value': 'keylevel5418'}]}}
{'Internalid': '24350', 'isDelete': 'false', 'fields': {'field': [{'id': 'CATEGOR_LEVEL_1', 'value': 'MR'}, {'id': 'LOW_PRODSERV', 'value': 'RES'}, {'id': 'LOW_LEVEL_2', 'value': 'keylevel221'}, {'id': 'LOW_LEVEL_3', 'value': 'keylevel3122'}, {'id': 'LOW_LEVEL_4', 'value': 'keylevel425'}, {'id': 'LOW_LEVEL_5', 'value': 'keylevel5221'}]}}]
{'isDelete': 'false', 'fields': {'field': [{'id': 'S_EAST', 'value': 'N'}, {'id': 'W_EST', 'value': 'N'}, {'id': 'M_WEST', 'value': 'N'}, {'id': 'N_EAST', 'value': 'N'}, {'id': 'LOW_AREYOU_ASSET', 'value': '-1'}, {'id': 'LOW_SWART_PROG', 'value': '-1'}]}}
{'isDelete': 'false', 'fields': {'field': {'id': 'LOW_COD_CONDUCT', 'value': '-1'}}}
{'isDelete': 'false', 'fields': {'field': [{'id': 'LOW_SUPPLIER_TYPE', 'value': '2'}, {'id': 'LOW_DO_INT_BOTH', 'value': '1'}]}}
我试图爆炸这列
>>> df_3.explode('integration-outbound:IntegrationEntity.integrationEntityDetails.supplier.forms.form.records.record')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib64/python3.6/site-packages/pandas/core/frame.py", line 6318, in explode
result = df[column].explode()
File "/usr/local/lib64/python3.6/site-packages/pandas/core/series.py", line 3504, in explode
values, counts = reshape.explode(np.asarray(self.array))
File "pandas/_libs/reshape.pyx", line 129, in pandas._libs.reshape.explode
KeyError: 0
我可以遍历每一行,并尝试找出它是否为列表并执行某些操作,但这似乎并不正确
if str(type(df_3.loc[i,'{}'.format(c)])) == "<class 'list'>":
有什么办法可以对这类数据使用爆炸功能
答案 0 :(得分:0)
我能够做到,但是爆炸行都被过滤到DataFrame的顶部(以防在较低的行中有更多的列表类型对象)。
pd.concat((df.iloc[[type(item) == list for item in df['Column']]].explode('Column'),
df.iloc[[type(item) != list for item in df['Column']]]))
它实际上执行了您所说的:检查对象类型是否为列表,如果是,则爆炸。然后将此分解系列与其余数据(即非列表)连接起来。较长的DataFrame似乎对性能没有太大影响。
输出:
Column
0 {'Internalid': '24348', 'isDelete': 'false', '...
0 {'Internalid': '24349', 'isDelete': 'false', '...
0 {'Internalid': '24350', 'isDelete': 'false', '...
1 {'isDelete': 'false', 'fields': {'field': [{'i...
2 {'isDelete': 'false', 'fields': {'field': {'id...
3 {'isDelete': 'false', 'fields': {'field': [{'i...
答案 1 :(得分:0)
使用pandas-read-xml的替代方式
from pandas_read_xml import flatten, fully_flatten
df = flatten(df)