我想从下一层开始训练深度网络:
df = df.iloc[:,0:43]
df = np.array(df)
df = df.astype(np.float64)
df[df>=10000000000] = 0
df = m.fit_transform(df)
x_train , x_test , y_train , y_test = train_test_split(df ,lbs ,test_size=0.2)
input_df = Input(shape = (29606403, ))
# "encoded" is the encoded representation of the input
encoded = Dense(2048, activation='relu')(input_df)
encoded = Dense(1024, activation='relu')(encoded)
encoded = Dense(512, activation='relu')(encoded)
encoded = Dense(256, activation='relu')(encoded)
encoded = Dense(128, activation='relu')(encoded)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(32, activation='relu')(encoded)
# "decoded" is the lossy reconstruction of the input
decoded = Dense(64, activation='relu')(encoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(256, activation='relu')(decoded)
decoded = Dense(512, activation='relu')(decoded)
decoded = Dense(1024, activation='relu')(decoded)
decoded = Dense(2048, activation='relu')(decoded)
decoded = Dense(29606403, activation='softmax')(decoded)
autoencoder = Model(input_df, decoded)
autoencoder.compile(optimizer='adam', loss='categorical_crossentropy',metrics=['accuracy'])
n_epochs = 10
autoencoder.fit(x_train, x_train,
epochs=n_epochs,
batch_size=256,
shuffle=True,
validation_data=(x_test, x_test))
在培训期间,出现错误: ValueError:检查输入时出错:预期input_1具有形状(29606403,)但具有形状(43,)的数组