Tensorflow 2.2.0错误:使用双向LSTM层时,[预测必须> 0] [条件x> = y不按元素进行:]

时间:2020-06-27 05:37:15

标签: python tensorflow lstm

在执行命名实体识别任务时,出现以下错误消息:

tensorflow.python.framework.errors_impl.InvalidArgumentError:  assertion failed: [predictions must be >= 0] [Condition x >= y did not hold element-wise:] [x (bidirectional_lstm_model/time_distributed/Reshape_1:0) = ] [[[-0.100267865 -0.104010895 0.04090859...]]...] [y (Cast_2/x:0) = ] [0]
     [[{{node assert_greater_equal/Assert/AssertGuard/else/_1/Assert}}]] [Op:__inference_train_function_6216]
Function call stack:
train_function

如何解决此问题?我已经检查了输入train_xtrain_y张量,它们看起来还不错(最后提供了一些示例)。

我最初使用的是条件随机场解码器。我将其替换为密集层,以查看是否更改了错误消息。该错误仍然保持不变,并且与模型的RNN组件有关。

通常,您使用什么策略从TF的内心深处解决此类错误?我尝试在PyCharm上建立调试会话,并跳过了很多TF文件,而没有学习到有关如何解决问题的任何有用信息。

以下是我的网络体系结构:

Model: "bidirectional_lstm_model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
encoder_input (InputLayer)   [(None, None)]            0         
_________________________________________________________________
encoder_embedding (Embedding (None, None, 300)         2013300   
_________________________________________________________________
encoder_bidirectional_rnn (B (None, None, 32)          40576     
_________________________________________________________________
time_distributed (TimeDistri (None, None, 25)          825       
=================================================================
Total params: 2,054,701
Trainable params: 41,401
Non-trainable params: 2,013,300
_________________________________________________________________

以上+更多详细信息(损失,优化程序等)

# Create model
encoder_input = keras.Input(shape=(None,), name='encoder_input')
encoder_embedding = layers.Embedding(input_dim=input_vocabulary,
                                     output_dim=embedding_vector_len,
                                     embeddings_initializer=tf.keras.initializers.Constant(embedding_matrix),
                                     trainable=False, name='encoder_embedding')(encoder_input)
encoder_rnn = layers.LSTM(16, return_sequences=True, name='encoder_rnn')
encoder_bidirectional_rnn = layers.Bidirectional(encoder_rnn, name='encoder_bidirectional_rnn')(encoder_embedding)
decoder_dense = layers.TimeDistributed(layers.Dense(number_of_tags, name='decoder_dense'))(encoder_bidirectional_rnn)
model = keras.Model(inputs=encoder_input, outputs=decoder_dense, name='bidirectional_lstm_model')
model.summary()

metrics_precision = tf.keras.metrics.Precision()
metrics_recall = tf.keras.metrics.Recall()
model.compile(
    loss=tf.keras.losses.categorical_crossentropy,
    optimizer='adam',
    metrics=[metrics_precision, metrics_recall]
)

这是我的train_xtrain_y数组的样子:

# Shapes
train_x.shape  # (9775, 47)  (np.ndarray type)
train_y.shape  # TensorShape([9775, 47, 25])  (Obtained from tf.one_hot)

# Sample (Zero-padded from the right)
train_x[0, :]

# array([4917, 2806, 6357, 2287, 6059,    0,    0,    0,    0,    0,    0,
#      0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
#      0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
#      0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
#      0,    0,    0])

train_y[0, :, :]

# array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],  # Non "O" tag
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],  # Non "O" tag
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
#   [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]], dtype=float32)

1 个答案:

答案 0 :(得分:3)

您错过了最后一层激活:

decoder_dense = layers.TimeDistributed(layers.Dense(number_of_tags, name='decoder_dense'))(encoder_bidirectional_rnn)

您应该指定您想要一个softmax,将激活保留为默认值实际上是线性激活,这意味着您可以具有任何值,因此可以为负值。您应该按如下方式创建最后一个Dense层:

decoder_dense = layers.TimeDistributed(layers.Dense(number_of_tags, activation='softmax', name='decoder_dense'))(encoder_bidirectional_rnn)