我正在尝试使用 predict_generator 来预测测试数据,并且当我用Google搜索时,我得到的输出是“ Numpy of arrays”,它说它们是概率。我不明白输出或值是什么。预测值的形状为(26,1)。
模型代码如下所示:
def build_model(maxlen, vector_dim, layers, dropout):
print('Build model...')
model = Sequential()
model.add(Masking(mask_value=0.0, input_shape=(maxlen, vector_dim)))
for i in range(1, layers):
model.add(Bidirectional(GRU(units=256, activation='tanh', recurrent_activation='hard_sigmoid', return_sequences=True)))
model.add(Dropout(dropout))
model.add(Bidirectional(GRU(units=256, activation='tanh', recurrent_activation='hard_sigmoid')))
model.add(Dropout(dropout))
model.compile(loss='binary_crossentropy', optimizer='adamax', metrics=['acc',km.precision(), km.recall(),km.true_positive(),km.false_positive(),km.false_negative()])
model.summary()
#plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)
return model
model = build_model(maxlen, vector_dim, layers, dropout)
print("Test1...")
dataset = []
labels = []
testcases = []
filenames = []
funcs = []
for filename in os.listdir(testdataSet_path):
if(filename.endswith(".pkl") is False):
continue
print(filename)
f = open(os.path.join(testdataSet_path, filename),"rb")
datasetfile,labelsfile,funcsfiles,filenamesfile,testcasesfile = pickle.load(f)
f.close()
dataset += datasetfile
labels += labelsfile
testcases += testcasesfile
funcs += funcsfiles
filenames += filenamesfile
print(labels)
print(len(dataset), len(labels), len(testcases))
bin_labels = []
for label in labels:
bin_labels.append(multi_labels_to_two(label))
labels = bin_labels
batch_size = 1
test_generator = generator_of_data(dataset, labels, batch_size, maxlen, vector_dim)
all_test_samples = len(dataset)
steps_epoch = int(math.ceil(all_test_samples / batch_size))
testGen = test_generator
#testGen.reset()
predictions = model.predict_generator(testGen,steps = steps_epoch,verbose=1)
print(np.shape(predictions))
print(predictions)
大量的数组是:
[[0.5308861 ]
[0.5396905 ]
[0.54187196]
[0.5308773 ]
[0.5308861 ]
[0.48453102]
[0.48453102]
[0.4664028 ]
[0.46451277]
[0.72770065]
[0.7277006 ]
[0.66269165]
[0.679774 ]
[0.6405551 ]
[0.64055496]
[0.6311009 ]
[0.64576715]
[0.6826591 ]
[0.70780784]
[0.64045835]
[0.64045817]
[0.68670017]
[0.6867001 ]
[0.5396905 ]
[0.54187196]
[0.5308773 ]]