我正在努力进行一个机器学习项目,在这个项目中我试图将其结合起来:
GridSearchCV
搜索最佳参数。只要我在管道中手动填写不同变压器的参数,代码就可以正常工作。 但是,一旦我尝试传递不同值的列表以在我的gridsearch参数中进行比较,就会收到各种无效的参数错误消息。
这是我的代码:
首先,我将特征分为数字和分类
from sklearn.compose import make_column_selector
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.impute import KNNImputer
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
numerical_features=make_column_selector(dtype_include=np.number)
cat_features=make_column_selector(dtype_exclude=np.number)
然后,我为数字和分类特征创建2个不同的预处理管道:
numerical_pipeline= make_pipeline(KNNImputer())
cat_pipeline=make_pipeline(SimpleImputer(strategy='most_frequent'),OneHotEncoder(handle_unknown='ignore'))
我将两者组合到另一个管道中,设置了参数,然后运行我的GridSearchCV
代码
model=make_pipeline(preprocessor, LinearRegression() )
params={
'columntransformer__numerical_pipeline__knnimputer__n_neighbors':[1,2,3,4,5,6,7]
}
grid=GridSearchCV(model, param_grid=params,scoring = 'r2',cv=10)
cv = KFold(n_splits=5)
all_accuracies = cross_val_score(grid, X, y, cv=cv,scoring='r2')
我尝试了不同的方法来声明参数,但从未找到合适的方法。我总是收到“无效参数”错误消息。
能否请您帮助我了解出了什么问题?
非常感谢您的支持,请多加注意!
答案 0 :(得分:1)
我假设您可能已经将preprocessor
定义如下,
preprocessor = Pipeline([('numerical_pipeline',numerical_pipeline),
('cat_pipeline', cat_pipeline)])
然后您需要按以下方式更改参数名称:
pipeline__numerical_pipeline__knnimputer__n_neighbors
但是,代码还有其他几个问题:
您无需在执行cross_val_score
后致电GridSearchCV
。对于每种超参数组合,GridSearchCV本身的输出将具有交叉验证结果。
KNNImputer
将不起作用。您需要在cat_pipeline
之前申请num_pipeline
。
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.compose import make_column_selector
import pandas as pd # doctest: +SKIP
X = pd.DataFrame({'city': ['London', 'London', 'Paris', np.nan],
'rating': [5, 3, 4, 5]}) # doctest: +SKIP
y = [1,0,1,1]
from sklearn.compose import make_column_selector
from sklearn.pipeline import make_pipeline, Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.impute import KNNImputer
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score, KFold
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
numerical_features=make_column_selector(dtype_include=np.number)
cat_features=make_column_selector(dtype_exclude=np.number)
numerical_pipeline= make_pipeline(KNNImputer())
cat_pipeline=make_pipeline(SimpleImputer(strategy='most_frequent'),
OneHotEncoder(handle_unknown='ignore', sparse=False))
preprocessor = Pipeline([('cat_pipeline', cat_pipeline),
('numerical_pipeline',numerical_pipeline)])
model=make_pipeline(preprocessor, LinearRegression() )
params={
'pipeline__numerical_pipeline__knnimputer__n_neighbors':[1,2]
}
grid=GridSearchCV(model, param_grid=params,scoring = 'r2',cv=2)
grid.fit(X, y)