使用C#检测平面图中的门形状

时间:2020-06-07 17:52:46

标签: c# image-processing emgucv

我正在处理栅格图像绘制,所以我的目标是仅检测门形状 我正在使用 Emgu C# 并应用了 Haris Corner 算法,阈值= 50 然后检测拐角矩阵,然后计算两点之间的距离,以近似于两点是门形状的起点和终点 问题:
我无法过滤图像以进行最佳检测,例如如何删除所有文本,而噪点只能保留粗体的墙壁 [![在此处输入图片描述] [1]] [1] [![在此处输入图片描述] [2]] [2]

var img = imgList["Input"].Clone();            
                var gray = img.Convert<Gray, byte>().ThresholdBinaryInv(new Gray(100), new Gray(100)); ;
                imageBoxEx2.Image = gray.ToBitmap();
                var corners = new Mat();
                CvInvoke.CornerHarris(gray, corners,2);
                CvInvoke.Normalize(corners, corners, 255, 0, Emgu.CV.CvEnum.NormType.MinMax);
                Matrix<float> matrix = new Matrix<float>(corners.Rows, corners.Cols);
                corners.CopyTo(matrix);
                dt.Rows.Clear();
                List<Point> LstXpoints = new List<Point>();
                List<Point> LstYpoints = new List<Point>();
                List<PointF> LstF = new List<PointF>();
                for (int i = 0; i < matrix.Rows; i++)
                {
                    for (int j = 0; j < matrix.Cols; j++)
                    {
                        if (matrix[i, j] > threshold)
                        {

                            LstXpoints.Add(new Point ( j, i));
                            LstYpoints.Add(new Point(i, j));
                           // CvInvoke.Circle(img, new Point(j, i), 5, new MCvScalar(0, 0, 255), 3);
                        }
                    }
                }

2 个答案:

答案 0 :(得分:3)

[编辑-扩展答案以提供完整的解决方案]

前言

我通常不会提供“解决方案”,因为我觉得它远远超出了有用的,可重用的问答格式……但这是一个有趣的问题。

答案

以下详细介绍了一种基本算法,用于检测平面图中的潜在门。除了所提供的单个案例之外,还没有对性能进行优化或测试。由于门的定义仅由OP给出为“指定宽度的开口”,因此也容易出现错误指示。该算法只能检测正交的门原理。

示例结果:

Example Result

方法

方法如下:

  1. 对输入图像进行反转和阈值处理,以便将最暗的元素转换为白色(全字节值)。
  2. 计算轮廓检测,以识别现在白色区域的边界。
  3. 过滤以仅在大于选定阈值的区域上选择轮廓(因此将文本元素去除为噪声)。
  4. “行走”所选轮廓以确定发生“角”的节点。拐角定义为高于阈值的角度变化。
  5. 分析检测到的对角是否符合“门”的条件。
  6. [多余的渲染]最后,在已过滤轮廓的矩形边界内添加栅格,以便将其白色填充为结果图像。 (注意:)这在计算上不算高效,也不优雅,但是用于轮廓填充的EmguCV方法仅支持凸轮廓。 “门”也显示为红色。

算法

// Open the image
Image<Gray, byte> baseImage = new Image<Gray, byte>(@"TestLayout.jpg");
// Invert the image
Image<Gray, byte> invBaseImage = baseImage.Not();
// Threshold the image so as "close to white" is maintained, all else is black
Image<Gray, byte> blackOnlyImage = invBaseImage.ThresholdBinary(new Gray(200), new Gray(255));
// An output image of the same size to contain the walls
Image<Gray, byte> wallsOnlyImage = new Image<Gray, byte>(blackOnlyImage.Size);

// A set of dected contours
VectorOfVectorOfPoint inputContours = new VectorOfVectorOfPoint();
// A set of validated contours
List<VectorOfPoint> validContours = new List<VectorOfPoint>();
// Perform contour detection
Mat hierarchy = new Mat();
CvInvoke.FindContours(blackOnlyImage, inputContours, hierarchy, RetrType.External, ChainApproxMethod.ChainApproxSimple);

// Filter out to select only contours bounding more that 500 pixels
int areaThreshold = 500;
for (int c = 0; c < inputContours.Size; c++)
{ 
    if (CvInvoke.ContourArea(inputContours[c]) >= areaThreshold)
    {
        validContours.Add(inputContours[c]);
    }
}

// Find all the corner points in the valid contours
List<Point> contourCorners = new List<Point>();
foreach(VectorOfPoint contour in validContours)
{
    contourCorners.AddRange(CornerWalk(contour, 80));
}

// Sort the contour corners by proximity to origin in order to optimise following loops
contourCorners.OrderBy(p => Math.Sqrt(Math.Pow(p.X, 2) + Math.Pow(p.Y, 2)));

// Extract all door candidate point pairs from all detected corners
List<Tuple<Point, Point>> doorCandidates = FindDoors(contourCorners, 2, 30, 45);

// Pixels contained within the filtered contours are walls, fill them white
RasterFill(wallsOnlyImage, validContours);

// Output Image
Image<Rgb, byte> outputImage = new Image<Rgb, byte>(wallsOnlyImage.Size);
CvInvoke.CvtColor(wallsOnlyImage, outputImage, ColorConversion.Gray2Rgb);
// Draw the doors
foreach (Tuple<Point,Point> door in doorCandidates)
{
    outputImage.Draw(new LineSegment2D(door.Item1, door.Item2), new Rgb(255,0,0), 1);
}

// Display generated output and save it to file
CvInvoke.NamedWindow("TestOutput");
CvInvoke.Imshow("TestOutput", outputImage);           
CvInvoke.WaitKey();
outputImage.Save(@"OutputImage.bmp");

角提取

static List<Point> CornerWalk(VectorOfPoint contour, int threshold)
{
    // Create a resultant list of points
    List<Point> result = new List<Point>();

    // Points are used to store 2D vectors as dx,dy (i,j)
    Point reverseVector, forwardVector;
    double theta;
    // For each point on the contour
    for(int p = 1; p < contour.Size; p++)
    {
        // Determine the vector to the prior point
        reverseVector = new Point()
        {
            X = contour[p].X - contour[p - 1].X,
            Y = contour[p].Y - contour[p - 1].Y,
        };

        // Determine the vector to the next point
        forwardVector = p == contour.Size - 1 ?
        new Point()
        {
            X = contour[0].X - contour[p].X,
            Y = contour[0].Y - contour[p].Y,
        } :
        new Point()
        {
            X = contour[p + 1].X - contour[p].X,
            Y = contour[p + 1].Y - contour[p].Y,
        };

        // Compute the angular delta between the two vectors (Radians)
        theta = Math.Acos(((reverseVector.X * forwardVector.X) + (reverseVector.Y * forwardVector.Y)) /
            (Math.Sqrt(Math.Pow(reverseVector.X, 2) + Math.Pow(reverseVector.Y, 2)) *
            Math.Sqrt(Math.Pow(forwardVector.X, 2) + Math.Pow(forwardVector.Y, 2))));

        // Convert the angle to degrees
        theta *= 180 / Math.PI;

        // If the angle is above or equal the threshold, the point is a corner
        if (theta >= threshold) result.Add(contour[p]);
    }

    // Return the result
    return result;
}

门检测

static List<Tuple<Point, Point>> FindDoors(
    List<Point> cornerPoints,
    int inLineTolerance,
    int minDoorWidth,
    int maxDoorWidth)
{
    // Create a resultant list of pairs of points
    List<Tuple<Point, Point>> results = new List<Tuple<Point, Point>>();
    Point p1, p2;
    // For every point in the list
    for (int a = 0; a < cornerPoints.Count; a++)
    {
        p1 = cornerPoints[a];
        // Against every other point in the list
        for (int b = 0; b < cornerPoints.Count; b++)
        {
            // Don't compare a point to it's self...
            if (a == b) continue;
            p2 = cornerPoints[b];

            // If p1 to p2 qualifies as a door:
                // Vertical Doors -     A vertical door will have to points of the same X value, within tolerance, and a Y value delta within the
                //                      min-max limits of a door width.
            if (((Math.Abs(p1.X - p2.X) < inLineTolerance) && (Math.Abs(p1.Y - p2.Y) > minDoorWidth) && (Math.Abs(p1.Y - p2.Y) < maxDoorWidth)) ||
                // Horizontal Doors -   A horizontal door will have to points of the same Y value, within tolerance, and a X value delta within the
                //                      min-max limits of a door width.
                ((Math.Abs(p1.Y - p2.Y) < inLineTolerance) && (Math.Abs(p1.X - p2.X) > minDoorWidth) && (Math.Abs(p1.X - p2.X) < maxDoorWidth)))
            {
                // Add the point pair to the result
                results.Add(new Tuple<Point, Point>(p1, p2));
                // Remove them from further consideration
                cornerPoints.Remove(p1);
                cornerPoints.Remove(p2);
                // Decrement the looping indexes and start over with a new p1
                b--; a--;
                break;
            }
        }
    }
    // Finally return the result
    return results;
}

轮廓填充(渲染实用程序-不起作用)

static void RasterFill(Image<Gray,byte> dstImg, List<VectorOfPoint> contours)
{
    Rectangle contourBounds;
    PointF testPoint;
    // For each contour detected
    foreach(VectorOfPoint contour in contours)
    {
        // Within the bounds of this contour
        contourBounds = CvInvoke.BoundingRectangle(contour);
        for (int u = contourBounds.X; u < contourBounds.X + contourBounds.Width; u++)
        {
            for (int v = contourBounds.Y; v < contourBounds.Y + contourBounds.Height; v++)
            {
                // Test to determine whether the point is within the contour
                testPoint = new PointF(u, v);
                // If it is inside the contour, OR on the contour
                if (CvInvoke.PointPolygonTest(contour, testPoint, false) >= 0)
                {
                    // Set it white
                    dstImg.Data[v, u, 0] = 255;
                }
            }
        }
    }
}

答案 1 :(得分:1)

对不起,python代码。但这也许会帮助您解决问题。 查看评论。

import cv2 

img = cv2.imread('NHoXn.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# convert to binary image
thresh=cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY )[1]

#  Morphological reconstruction (delete labels)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7,7))
kernel2 = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
marker = cv2.dilate(thresh,kernel,iterations = 1)
while True:
    tmp=marker.copy()
    marker=cv2.erode(marker, kernel2)
    marker=cv2.max(thresh, marker)
    difference = cv2.subtract(tmp, marker)
    if cv2.countNonZero(difference) == 0:
        break


# only walls
se=cv2.getStructuringElement(cv2.MORPH_RECT, (4,4))
walls=cv2.morphologyEx(marker, cv2.MORPH_CLOSE, se)
walls=cv2.erode(walls, kernel2,iterations=2)

# other objects
other=cv2.compare(marker,walls, cv2.CMP_GE)
other=cv2.bitwise_not(other)

# find connected components and select by size and area
output = cv2.connectedComponentsWithStats(other, 4, cv2.CV_32S)
num_labels = output[0]
labels = output[1]
stats=output[2]
centroids = output[3]
for i in range(num_labels):
    left,top,width,height,area=stats[i]
    if abs(width-40)<12 and abs(height-40)<12 and area>85:
         cv2.rectangle(img,(left, top), (left+width, top+height), (0,255,0))

cv2.imwrite('doors.png', img)

结果: enter image description here

  1. 图中显示的内容:墙壁,门,窗户,家具,文字标签。
  2. 找到的门总是碰壁。
  3. 墙壁与其他物体有何不同?这些线很粗,很粗。因此,利用期望的结构元件的膨胀可以仅留下部分壁。然后,通过形态重建,将墙壁以及与墙壁相关的元素还原在一起:首先是门,窗户。将会清除图形上所有不接触墙壁的东西。
  4. 如果进一步进行膨胀和侵蚀,那么仅会保留墙壁,而像窗户和门这样的薄元素也会消失。
  5. 从第三阶段减去(或逻辑运算)到第四阶段,我们得到的图片仅包含接触墙壁的门,窗和家具。
  6. 从窗户上拉出的门有什么区别?它们的BB几乎是正方形的,此图中所有门的大小都大致相同,它们的长度大约等于r *(1 + pi / 4)。 代码中进一步选择了这些符号。在此阶段,您可以添加更多标志,以更准确地将门与其他元素分开。