我想知道当您通过pd.merge
与dataframe.merge()
合并时的区别是什么,如下例:
pd.merge(dataframe1, dataframe2)
和
dataframe1.merge(dataframe2)
答案 0 :(得分:0)
我们拥有两个函数来处理几乎相同的任务pandas.merge()和DataFrame.merge()。
pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False,
sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False,
sort=False, suffixes='_x', '_y', copy=True, indicator=False, validate=None)
两者看起来很相似,所以使用一个比另一个有什么优势?
pd.merge()调用df.merge,因此df1.merge(df2)的结果几乎与pd.merge(df1,df2)相同。
但是,pd.merge()是包装样式函数,而df1.merge()是链接样式,这使得后面的链接从左到右更容易< / p>
例如
df1.merge(df2).merge(df3)
#looks better and readable [analogus to %>% pipeline operator in R] than
pd.merge(pd.merge(df1, df2), df3).
d1 = pd.read_html('https://worldpopulationreview.com/countries')
pop = d1[0]
print(pop.info(), '\n') #Data for 232 countries for 7 columns
pop.head(3)
d2 = pd.read_html('https://worldpopulationreview.com/country-rankings/median-age')
age = d2[0]
print(age.info(), '\n') #Data for 221 countries for 5 columns
age.head(3)
display('pd.merge(): ', pd.merge(pop, age), 'df.merge(): ', pop.merge(age))