我对栅格数据和使用R进行空间数据分析非常陌生,如果我有一个明显的解决方案或过程我很想念,就此道歉。
我有一个来自WorldPop的人口数据的栅格文件,以及覆盖在其上的一组纬度/经度位置点。我正在尝试确定在这些兴趣点给定距离之内的人口比例(根据WorldPop的估算),还有不是的比例。
我了解到使用raster :: extract,我应该能够从(例如)每个点周围的1公里缓冲区中获得总体值的总和。 (尽管我的点和栅格数据都在经/纬投影中,所以我认为我需要首先通过here将投影更改为utm来对此进行校正。)
但是,由于这些点中的一些点相距不到1公里,因此我担心此总和将缓冲区重叠的某些单元格的数量加倍。缓冲会自动对此进行校正吗,还是有一种有效的方法来确保不是这种情况,并且还可以从缓冲点区域选择的倒数中获取值?
答案 0 :(得分:1)
请始终在最小的独立可复制示例中包括一些示例数据。说,
library(raster)
r <- raster(system.file("external/rlogo.grd", package="raster"))
d <- matrix(c(48, 48, 48, 53, 50, 46, 54, 70, 84, 85, 74, 84, 95, 85,
66, 42, 26, 4, 19, 17, 7, 14, 26, 29, 39, 45, 51, 56, 46, 38, 31,
22, 34, 60, 70, 73, 63, 46, 43, 28), ncol=2)
p <- SpatialPoints(d, proj4string=crs(r))
具有点p
和栅格r
的简单工作流程将是
b <- buffer(p, 10)
m <- mask(r, b)
ms <- cellStats(m, "sum")
rs <- cellStats(r, "sum")
ms/rs
#[1] 0.4965083
或者您可以使用terra
来加快执行速度,就像这样
library(terra)
r <- rast(system.file("ex/logo.tif", package="terra")) [[1]]
p <- vect(d, crs=crs(r))
b <- buffer(p, 10)
m <- mask(r, b)
ms <- global(m, "sum", na.rm=TRUE)
rs <- global(r, "sum")
ms/rs
顺便说一句,使用raster
包,您关于需要转换lon / lat数据的断言对于extract
或buffer
是不正确的。相反,对于terra
,您需要这样做(要修复)。
答案 1 :(得分:-1)
好吧,多亏了suggestion via Twitter和this guide在点周围创建了SpatialPolygons,我才能够找到答案。这样做可能不是最有效的方法-事实证明,在大型多边形上速度很慢-但这对我来说是可行的。
这里是示例代码:
library(tabularaster)
library(raster)
library(tidyverse)
library(geos)
# -----------------------
# load point data ---
p <- read_csv("points_of_interest.csv")
p_df <- p %>% rename(x = lat, y = lon)
p_coords <- p_df[, c("y","x")]
p_spdf <- SpatialPointsDataFrame(
coords = pc_coords,
data = p_df,
proj4string = CRS("+init=epsg:4326"))
# convert projection to metric units
p_mrc <- spTransform(
p_spdf,
CRS("+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0
+x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs")
)
# buffer to 1000 meters
p_mrc_1k_mrc <- gBuffer(
p_mrc, byid = TRUE, width = 1000)
# switch back to lat/lon
p_mrc_1k <- spTransform(p_mrc_1k_mrc, CRS("+init=epsg:4326"))
# load raster data -------
r <- raster("pop.tif")
r_tib <- tabularaster::as_tibble(r)
# get intersection of cells and polygons
cell_df_1k <- cellnumbers(r, p_mrc_1k)
# get list of cells where there is intersection
target_cell_1k <- cell_df_1k$cell_
# add cell values to df listing all cells covered by polys
target_cells_extract_1k <- cell_df_1k %>%
rename(cellindex = cell_) %>%
left_join(r_tib)
# calculate the sum of population within 1k radius for each object
# (this includes overlapping population cells shared between polys)
cell_sum_1k <- target_cells_extract_1k %>%
group_by(object_) %>%
summarize(pop_1k = sum(cellvalue, na.rm = T))
# get only unique cell values for total overlapping coverage of all polys
target_cells_unique_1k <- r_tib %>% filter(cellindex %in% target_cell_1k)
total_coverage_pop <- sum(target_cells_unique_1k$cellvalue, na.rm = T)
outside_coverage_pop <- sum(r_tib$cellvalue) - total_coverage_pop