我正在尝试处理地面真实图像以创建一个热编码张量:
def one_hot(img, nclasses):
result = np.zeros((img.shape[0], img.shape[1], nclasses))
img_unique = img.reshape(512*512, img.shape[2])
unique = np.unique(img_unique, axis=0)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
for k, unique_val in enumerate(unique):
if (np.array_equal(img[i,j], unique_val)):
result[i,j,k] = 1
break
return result
这是从WxHx3图像创建WxHxN张量。由于其性能,我真的不喜欢这种方法。您能建议更有效的方法吗?
我尝试使用tf.one_hot,但是它将图像转换为WxHx3xN张量。
答案 0 :(得分:0)
对于已知3类的特定情况,这应该可以更快地工作
def one_hot2(img):
class1 = [255,0,0]
class2 = [0,0,255]
class3 = [255,255,255]
label = np.zeros_like(img)
label[np.sum(img==np.array([[class2]]), 2)==3] = 1
label[np.sum(img==np.array([[class3]]), 2)==3] = 2
onehot = np.eye(3)[label]
return onehot
答案 1 :(得分:0)
对于纯TF2.x方法,您还可以执行以下操作
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import tensorflow as tf
@tf.function # Remove this to see the tf.print array values
def get_one_hot():
label_ids = [0,5,10]
mask_orig = tf.constant([[0,10], [0,10]], dtype=tf.float32) # [2,2]
mask_onehot = tf.concat([tf.expand_dims(tf.math.equal(mask_orig, label_id),axis=-1) for label_id in label_ids], axis=-1) # [2,2,2]
mask_label_present = tf.reduce_any(mask_onehot, axis=[0,1]) # [2]
tf.print('\n - label_ids:{}'.format(label_ids))
tf.print('\n - mask_orig:\n{}\n'.format(mask_orig))
for id_, label_id in enumerate(label_ids):
tf.print(' - mask_onehot:{}\n{}'.format(label_id, mask_onehot[:,:,id_]))
tf.print('\n - mask_label_present:\n ', mask_label_present)
get_one_hot()