在箱线图中按线连接中值

时间:2020-05-26 21:57:10

标签: python matplotlib boxplot

我试图通过一条线连接一个箱线图的中值,但是我无法实现,我包括了它的图和代码。 我查看了其他帖子,但是使用了pandas模块,但是我以前没有使用过

为此: 绿线与另一条绿线连接,黄线与另一条黄线连接 connect the green line with the other green line and connect the yellow line with the other yellow line

import sys
import csv
import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple
from itertools import combinations
from random import randrange, choice
import numpy as np
from functools import cmp_to_key

point = namedtuple('point','x y z')#crea la tupla
fieldnames=["node_code","node_type","wlan_code","destination_id","x(m)","y(m)","z(m)","primary_channel","min_channel_allowed","max_channel_allowed","cw","cw_stage","tpc_min(dBm)","tpc_default(dBm)","tpc_max(dBm)","cca_min(dBm)","cca_default(dBm)","cca_max(dBm)","tx_antenna_gain","rx_antenna_gain","channel_bonding_model","modulation_default","central_freq (GHz)","lambda","ieee_protocol","traffic_load(pkts/s)"]#encabezados
#######FUNCIONES QUE EJECUTA EL PROGRAMA
def calcular_distancia(p1,p2):#FUNCION DE DISTANCIA
    return np.sqrt((p1.x-p2.x)**2+(p1.y-p2.y)**2+(p1.z-p2.z)**2)
def set_box_color1(bp1, color):
    plt.setp(bp1['boxes'], color=color)
    plt.setp(bp1['whiskers'], color=color)
    plt.setp(bp1['caps'], color=color)
    plt.setp(bp1['medians'], color='lime')
    plt.setp(bp1['fliers'], color=color)
def set_box_color2(bp2, color):
    plt.setp(bp2['boxes'], color=color)
    plt.setp(bp2['whiskers'], color=color)
    plt.setp(bp2['caps'], color=color)
    plt.setp(bp2['medians'], color='yellow')
    plt.setp(bp2['fliers'], color=color)
########################################################################
def main():
    sample1=[]
    sample2=[]
    posiciones=[]
    for arch_coord,arch_result in [("nodos_escn300_topologia1.csv","resultados_escn300_100_topologia1_v1_v2.csv"),("nodos_escn300_topologia2.csv","resultados_escn300_100_topologia2_v1_v2.csv")]:
        main = {} #diccionario QUE GUARDA TUPLA CON (ORIGEN/DESTINO/DISTANCIA/CANAL)
        with open(arch_coord,'r') as inputfile:
             reader = csv.DictReader(inputfile,delimiter=";",fieldnames=fieldnames )
             for row in reader:
                 if row['node_type']=='0':
                    main.update({row['wlan_code']:{'point':point(x=float(row['x(m)']),y=float(row['y(m)']), z= float(row['z(m)'])),'channel':row['primary_channel']}})

        temp=[]
        for item in combinations(main,2):
            d = calcular_distancia(main[item[0]]['point'],main[item[1]]['point'])
            temp.append(d)
            #print(item,d)

        posiciones.append(np.mean(temp))
        print(np.mean(temp))
        #print(posiciones)
        sample1_1 = []
        sample1_2 = []

        with open(arch_result,'r') as fhan:
            reader = csv.reader(fhan,delimiter=',')
            for row in reader:
                sample1_1.append(float(row[0]))
                sample1_2.append(float(row[1]))

            sample1.append(sample1_1)
            sample2.append(sample1_2)
    ax = plt.gca()
    bp1 = plt.boxplot(sample1,positions=np.array(posiciones)*1.0-0.4, widths = 0.6)
    set_box_color1(bp1,'red')
    bp2 = plt.boxplot(sample2,positions=np.array(posiciones)*1.0+0.4, widths = 0.6)
    set_box_color2(bp2,'blue')    
    plt.plot([], c='red', label='Brute Force')
    plt.plot([], c='blue', label='Enhanced')
    plt.legend()
    plt.xticks(rotation='vertical')
    #plt.xticks(range(1,len(posiciones)*1,15),posiciones,rotation='vertical')
    plt.xlim(100,215)
    plt.title("Grafica de Escenario 300(100 topologias)") 
    plt.xlabel("Distancia promedio")
    #plt.ylabel("Throughput")
    plt.grid(True)
    plt.show()

感谢您能为我提供的所有帮助

1 个答案:

答案 0 :(得分:1)

尝试添加以下代码:

import seaborn as sns
# you will have to find a work around with group by which will relate with your data
sns.pointplot(x='group', y='value', data=df.groupby('group', as_index=False).median(), ax=ax)