我一直在尝试训练模型,并在每个时期结束时计算精度和召回率。
自定义指标
class Metrics(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.precision = []
self.recall = []
def on_epoch_end(self, epoch, logs={}):
print(type(self.validation_data))
print(self.validation_data)
predict = np.round(np.asarray(self.model.predict(self.validation_data[0])))
targ = self.validation_data[1]
precision_score = sklm.precision_score(targ, predict)
recall = sklm.recall_score(targ, predict)
self.precision.append(precision_score)
self.recall.append(recall)
def avg_precision_score(self):
return np.mean(self.precision_score)
def avg_recall_score(self):
return np.mean(self.recall)
并且在训练时我正在使用数据生成器。
training_set = train_datagen.flow_from_directory('train/',
target_size=(dim_x,dim_y),
batch_size=8, # 16 32
class_mode='categorical')
test_set = test_datagen.flow_from_directory('test/',
target_size=(dim_x,dim_y),
batch_size=8, # 16 32
class_mode='categorical')
metrics = Metrics()
history = classifier.fit_generator(
training_set,
steps_per_epoch=2,#50,
epochs=1, # 25
validation_data=test_set,
validation_steps=10,
callbacks=[metrics]
)
但这给了self.validation作为None类型。 我在做什么错了?
答案 0 :(得分:0)
找到了解决此问题的方法。 提及问题评论 https://github.com/keras-team/keras/issues/10472
class Metrics(Callback):
def __init__(self, val_data, batch_size = 20):
super().__init__()
self.validation_data = val_data
self.batch_size = batch_size
初始化验证数据可以解决使用数据生成器时的问题。