我正在对如下所示的小型数据集进行逻辑回归:
在实现梯度下降和成本函数之后,我在预测阶段获得了89%的准确性,但是我想确保一切都井井有条,因此我试图绘制将两个数据集分开的决策边界线
下面,我展示了显示成本函数和theta参数的图。可以看出,当前我正在错误地打印决策边界线。
我的决策边界被绘制在数据集下方。 需要注意的一件事是我使用了功能缩放。
下面是我使用的代码:
主程序
%% Initialization
clear ; close all; clc
%% Load Data
% The first two columns contains the exam scores and the third column
% contains the label.
data = load('ex2data1.txt');
X = data(:, [1, 2]); y = data(:, 3);
%% ==================== Part 1: Plotting ====================
% We start the exercise by first plotting the data to understand the
% the problem we are working with.
fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
'indicating (y = 0) examples.\n']);
plotData(X, y);
% Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============ Part 2: Compute Cost and Gradient ============
% In this part of the exercise, you will implement the cost and gradient
% for logistic regression. You neeed to complete the code in
% costFunction.m
% Setup the data matrix appropriately, and add ones for the intercept term
[m, n] = size(X);
%Normalize Feature
[X_norm mu sigma] = featureNormalize(X);
% Add intercept term to x and X_test
X = [ones(m, 1) X];
X_norm = [ones(m, 1) X_norm];
% Initialize fitting parameters
initial_theta = zeros(n + 1, 1);
% Compute and display initial cost and gradient
J = computeCostgrad(X_norm, y, initial_theta);
fprintf('Cost at initial theta (zeros): %f\n', J);
fprintf('Expected cost (approx): 0.693\n');
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============= Part 2a: Gradient Descent =====================
alpha=0.1;
iter=1000;
[theta, J_hist]=gradientDescent(initial_theta, X_norm, y, alpha, iter);
fprintf('Theta found by gradient descent:\n');
fprintf('%f\n', theta);
% Plot the convergence graph
figure;
plot(1:numel(J_hist), J_hist, '-b', 'LineWidth', 2);
xlabel('Nnumelumber of iterations');
ylabel('Cost J');
% Plot Boundary
plotDecisionBoundary(theta, X, y);
% Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============== Part 4: Predict and Accuracies ==============
% After learning the parameters, you'll like to use it to predict the outcomes
% on unseen data. In this part, you will use the logistic regression model
% to predict the probability that a student with score 45 on exam 1 and
% score 85 on exam 2 will be admitted.
%
% Furthermore, you will compute the training and test set accuracies of
% our model.
%
% Your task is to complete the code in predict.m
% Predict probability for a student with score 45 on exam 1
% and score 85 on exam 2
%prob = sigmoid([1 45 85] * theta);
pred_admit=[45 85];
norm_pred_admit=[1,(pred_admit-mu)./sigma];
prob = norm_pred_admit*theta;
fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
'probability of %f\n'], prob);
fprintf('Expected value: 0.775 +/- 0.002\n\n');
% Compute accuracy on our training set
p = predict(theta, X_norm);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
fprintf('Expected accuracy (approx): 89.0\n');
fprintf('\n');
computeCostgrad
function [J] = computeCostgrad(X, y, theta)
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
prediction=sigmoid(X*theta);
prob1=-y'*log(prediction);
prob0=(1-y')*log(1-prediction);
J=1/m*(prob1-prob0);
endfunction
gradientDescent
function [theta, J_hist] = gradientDescent(theta, X, y, alpha, iter)
m=length(y);
J_hist=zeros(iter, 1);
for (i=1:iter)
prediction=sigmoid(X*theta);
err=prediction-y;
newDecrement = (alpha * (1/m) * err' * X);
theta=theta-newDecrement';
J_hist(i)=computeCostgrad(X,y,theta);
end
endfunction
plotDecisionBoundary
function plotDecisionBoundary(theta, X, y)
plotData(X(:,2:3), y);
hold on
if size(X, 2) <= 3
% Only need 2 points to define a line, so choose two endpoints
plot_x = [min(X(:,2))-2, max(X(:,2))+2];
% Calculate the decision boundary line
plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));
% Plot, and adjust axes for better viewing
plot(plot_x, plot_y)
% Legend, specific for the exercise
legend('Admitted', 'Not admitted', 'Decision Boundary')
axis([30, 100, 30, 100])
else
% Here is the grid range
u = linspace(-1, 1.5, 50);
v = linspace(-1, 1.5, 50);
z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = 1:length(u)
for j = 1:length(v)
z(i,j) = mapFeature(u(i), v(j))*theta;
end
end
z = z'; % important to transpose z before calling contour
% Plot z = 0
% Notice you need to specify the range [0, 0]
contour(u, v, z, [0, 0], 'LineWidth', 2)
end
hold off
end
功能正常化
function [X_norm, mu, sigma] = featureNormalize(X)
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));
mu=mean(X);
sigma=std(X);
X_norm1=(X(:,1)-mu(1))/sigma(1);
X_norm2=(X(:,2)-mu(2))/sigma(2);
X_norm=[X_norm1,X_norm2];
有人可以帮助我正确绘制决策边界吗?我认为在绘制决策边界图时,intercept的计算存在一些错误。
答案 0 :(得分:0)
由于使用了要素缩放,因此权重与原始数据不匹配。
您需要将X_norm
传递给plotDecisionBoundary
函数,而不是原始数据X
,如下所示:
plotDecisionBoundary(theta, X_norm, y);
同样,当您要预测一个新示例时,首先需要使用与计算所得的值相同的值对其进行缩放,以对训练示例进行标准化。
此外,在plotDecisionBoundary
中,行axis([30, 100, 30, 100])
适合X
而不适合X_norm
。因此,您需要对其进行更改以适应X_norm
的范围(这只是为了舒适起见,您始终可以通过更改缩放比例来更改它,直到找到该行为止)。