我有一个约150万行和数百列的数据表结构,代表带有赛马成绩的日期-这将用于预测模型,但首先需要进行特征工程计算才能计算出各个实体的罢工率创建前一天的记录进入每场比赛的条件。
“罢工率”可以用多种方法来定义,但是一个简单的方法是任何给定的马匹,教练员,骑师等的获胜次数与奔跑时间的比率。当然,这必须考虑到所有以前的奔跑和胜利。不包括“今天”的结果,因为这对于构建模型来说是无稽之谈。
无论如何,简化的数据结构(从网上的一些示例改编而来)就足以说明。
生成数据如下:
n <- 90
dt <- data.table(
date=rep(seq(as.Date('2010-01-01'), as.Date('2015-01-01'), by='year'), n/6),
finish=c(1:5),
trainer=sort(rep(letters[1:5], n/5))
)
想象一下,在这些日期上,每位教练员都有一名跑步者,其在比赛中的结束位置用“完成”表示。对于序列中的新日期(但不在此数据中),可以这样计算到目前为止的获胜率:
dt[order(trainer, date), .(strike_rate = sum(finish==1)/.N), by=trainer]
但是,为每个培训员显示的结果罢工率变量仅对于不在此数据集中的序列中的新日期(例如“ 2015-01-02”)或我们的样本不足集有效。
要构建模型,我们需要每天和每位培训师(以及许多其他实体,但现在让我们继续使用培训师)的罢工率保持一致。
我已经使用了shift
函数和数据表构造,但是无法使其用于此特定问题-但是,在循环上下文中,它的工作正常,尽管显示得非常好。
为说明所需的输出,此示例代码(尽管我确定它并不优雅!)可以正常工作:
#order dates most recent to oldest so that the loop works backwards in time:
dt <- dt[order(-date)]
#find unique dates (converting to character as something weird with date)
dates = as.character(unique(dt$date))
for (d in dates) {
#find unique trainers on this date
trainers = unique(dt$trainer[dt$date==d])
for (t in trainers) {
trainer_past_form = dt[trainer==t & date < d]
strike_rate = sum(trainer_past_form$finish==1)/nrow(trainer_past_form)
# save this strike rate for this day and this trainer
dt$strike_rate[dt$trainer==t & dt$date==d] <- strike_rate
}
}
并给出所需的输出:
date finish trainer strike_rate
1: 2015-01-01 1 a 0.2000000
2: 2015-01-01 2 a 0.2000000
3: 2015-01-01 3 a 0.2000000
4: 2015-01-01 4 b 0.2000000
5: 2015-01-01 5 b 0.2000000
6: 2015-01-01 1 b 0.2000000
7: 2015-01-01 2 c 0.2000000
8: 2015-01-01 3 c 0.2000000
9: 2015-01-01 4 c 0.2000000
10: 2015-01-01 5 d 0.2000000
11: 2015-01-01 1 d 0.2000000
12: 2015-01-01 2 d 0.2000000
13: 2015-01-01 3 e 0.2000000
14: 2015-01-01 4 e 0.2000000
15: 2015-01-01 5 e 0.2000000
16: 2014-01-01 5 a 0.1666667
17: 2014-01-01 1 a 0.1666667
18: 2014-01-01 2 a 0.1666667
19: 2014-01-01 3 b 0.2500000
20: 2014-01-01 4 b 0.2500000
21: 2014-01-01 5 b 0.2500000
22: 2014-01-01 1 c 0.1666667
23: 2014-01-01 2 c 0.1666667
24: 2014-01-01 3 c 0.1666667
25: 2014-01-01 4 d 0.1666667
26: 2014-01-01 5 d 0.1666667
27: 2014-01-01 1 d 0.1666667
28: 2014-01-01 2 e 0.2500000
29: 2014-01-01 3 e 0.2500000
30: 2014-01-01 4 e 0.2500000
31: 2013-01-01 4 a 0.1111111
32: 2013-01-01 5 a 0.1111111
33: 2013-01-01 1 a 0.1111111
34: 2013-01-01 2 b 0.3333333
35: 2013-01-01 3 b 0.3333333
36: 2013-01-01 4 b 0.3333333
37: 2013-01-01 5 c 0.1111111
38: 2013-01-01 1 c 0.1111111
39: 2013-01-01 2 c 0.1111111
40: 2013-01-01 3 d 0.2222222
41: 2013-01-01 4 d 0.2222222
42: 2013-01-01 5 d 0.2222222
43: 2013-01-01 1 e 0.2222222
44: 2013-01-01 2 e 0.2222222
45: 2013-01-01 3 e 0.2222222
46: 2012-01-01 3 a 0.1666667
47: 2012-01-01 4 a 0.1666667
48: 2012-01-01 5 a 0.1666667
49: 2012-01-01 1 b 0.3333333
50: 2012-01-01 2 b 0.3333333
51: 2012-01-01 3 b 0.3333333
52: 2012-01-01 4 c 0.0000000
53: 2012-01-01 5 c 0.0000000
54: 2012-01-01 1 c 0.0000000
55: 2012-01-01 2 d 0.3333333
56: 2012-01-01 3 d 0.3333333
57: 2012-01-01 4 d 0.3333333
58: 2012-01-01 5 e 0.1666667
59: 2012-01-01 1 e 0.1666667
60: 2012-01-01 2 e 0.1666667
61: 2011-01-01 2 a 0.3333333
62: 2011-01-01 3 a 0.3333333
63: 2011-01-01 4 a 0.3333333
64: 2011-01-01 5 b 0.3333333
65: 2011-01-01 1 b 0.3333333
66: 2011-01-01 2 b 0.3333333
67: 2011-01-01 3 c 0.0000000
68: 2011-01-01 4 c 0.0000000
69: 2011-01-01 5 c 0.0000000
70: 2011-01-01 1 d 0.3333333
71: 2011-01-01 2 d 0.3333333
72: 2011-01-01 3 d 0.3333333
73: 2011-01-01 4 e 0.0000000
74: 2011-01-01 5 e 0.0000000
75: 2011-01-01 1 e 0.0000000
76: 2010-01-01 1 a NaN
77: 2010-01-01 2 a NaN
78: 2010-01-01 3 a NaN
79: 2010-01-01 4 b NaN
80: 2010-01-01 5 b NaN
81: 2010-01-01 1 b NaN
82: 2010-01-01 2 c NaN
83: 2010-01-01 3 c NaN
84: 2010-01-01 4 c NaN
85: 2010-01-01 5 d NaN
86: 2010-01-01 1 d NaN
87: 2010-01-01 2 d NaN
88: 2010-01-01 3 e NaN
89: 2010-01-01 4 e NaN
90: 2010-01-01 5 e NaN
在数据表中“适当”执行此操作的任何帮助将不胜感激。可以看出,我已经开始使用该库,但是遇到了此类问题。我了解循环的逻辑,但是在150万行上使用这种类型的calc来处理所有变量的行效率不高。
答案 0 :(得分:2)
这里有一些选择。
1):使用非等额联接:
<a class="btn btn-success btn-sm btn-space" routerLink="/expediente/{{expediente.idpersona}}">Agregar expediente</a>
2)另一种选择应该更快:
dt[, strike_rate :=
.SD[.SD, on=.(trainer, date<date), by=.EACHI, sum(finish==1L)/.N]$V1
]
dt[order(trainer, date), strike_rate := {
ri <- rleid(date)
firstd <- which(diff(ri) != 0) + 1L
cs <- replace(rep(NA_real_, .N), firstd, cumsum(finish==1L)[firstd - 1L])
k <- replace(rep(NA_real_, .N), firstd, as.double(1:.N)[firstd - 1L])
nafill(cs, "locf") / nafill(k, "locf")
}, trainer]
的输出:
setorder(dt, -date, trainer, finish)[]
3)并且,如果OP可以忍受第二种方法,那么这是将 date finish trainer strike_rate
1: 2015-01-01 1 a 0.2000000
2: 2015-01-01 2 a 0.2000000
3: 2015-01-01 3 a 0.2000000
4: 2015-01-01 1 b 0.2000000
5: 2015-01-01 4 b 0.2000000
6: 2015-01-01 5 b 0.2000000
7: 2015-01-01 2 c 0.2000000
8: 2015-01-01 3 c 0.2000000
9: 2015-01-01 4 c 0.2000000
10: 2015-01-01 1 d 0.2000000
11: 2015-01-01 2 d 0.2000000
12: 2015-01-01 5 d 0.2000000
13: 2015-01-01 3 e 0.2000000
14: 2015-01-01 4 e 0.2000000
15: 2015-01-01 5 e 0.2000000
16: 2014-01-01 1 a 0.1666667
17: 2014-01-01 2 a 0.1666667
18: 2014-01-01 5 a 0.1666667
19: 2014-01-01 3 b 0.2500000
20: 2014-01-01 4 b 0.2500000
21: 2014-01-01 5 b 0.2500000
22: 2014-01-01 1 c 0.1666667
23: 2014-01-01 2 c 0.1666667
24: 2014-01-01 3 c 0.1666667
25: 2014-01-01 1 d 0.1666667
26: 2014-01-01 4 d 0.1666667
27: 2014-01-01 5 d 0.1666667
28: 2014-01-01 2 e 0.2500000
29: 2014-01-01 3 e 0.2500000
30: 2014-01-01 4 e 0.2500000
31: 2013-01-01 1 a 0.1111111
32: 2013-01-01 4 a 0.1111111
33: 2013-01-01 5 a 0.1111111
34: 2013-01-01 2 b 0.3333333
35: 2013-01-01 3 b 0.3333333
36: 2013-01-01 4 b 0.3333333
37: 2013-01-01 1 c 0.1111111
38: 2013-01-01 2 c 0.1111111
39: 2013-01-01 5 c 0.1111111
40: 2013-01-01 3 d 0.2222222
41: 2013-01-01 4 d 0.2222222
42: 2013-01-01 5 d 0.2222222
43: 2013-01-01 1 e 0.2222222
44: 2013-01-01 2 e 0.2222222
45: 2013-01-01 3 e 0.2222222
46: 2012-01-01 3 a 0.1666667
47: 2012-01-01 4 a 0.1666667
48: 2012-01-01 5 a 0.1666667
49: 2012-01-01 1 b 0.3333333
50: 2012-01-01 2 b 0.3333333
51: 2012-01-01 3 b 0.3333333
52: 2012-01-01 1 c 0.0000000
53: 2012-01-01 4 c 0.0000000
54: 2012-01-01 5 c 0.0000000
55: 2012-01-01 2 d 0.3333333
56: 2012-01-01 3 d 0.3333333
57: 2012-01-01 4 d 0.3333333
58: 2012-01-01 1 e 0.1666667
59: 2012-01-01 2 e 0.1666667
60: 2012-01-01 5 e 0.1666667
61: 2011-01-01 2 a 0.3333333
62: 2011-01-01 3 a 0.3333333
63: 2011-01-01 4 a 0.3333333
64: 2011-01-01 1 b 0.3333333
65: 2011-01-01 2 b 0.3333333
66: 2011-01-01 5 b 0.3333333
67: 2011-01-01 3 c 0.0000000
68: 2011-01-01 4 c 0.0000000
69: 2011-01-01 5 c 0.0000000
70: 2011-01-01 1 d 0.3333333
71: 2011-01-01 2 d 0.3333333
72: 2011-01-01 3 d 0.3333333
73: 2011-01-01 1 e 0.0000000
74: 2011-01-01 4 e 0.0000000
75: 2011-01-01 5 e 0.0000000
76: 2010-01-01 1 a NA
77: 2010-01-01 2 a NA
78: 2010-01-01 3 a NA
79: 2010-01-01 1 b NA
80: 2010-01-01 4 b NA
81: 2010-01-01 5 b NA
82: 2010-01-01 2 c NA
83: 2010-01-01 3 c NA
84: 2010-01-01 4 c NA
85: 2010-01-01 1 d NA
86: 2010-01-01 2 d NA
87: 2010-01-01 5 d NA
88: 2010-01-01 3 e NA
89: 2010-01-01 4 e NA
90: 2010-01-01 5 e NA
date finish trainer strike_rate
引入by=trainer
的一种方法:)
j
4),使用dt[order(trainer, date), strike_rate := {
ri <- rleid(date)
firstd <- which(diff(ri) != 0) + 1L
cs <- cumsum(finish==1L)
cumfinishes <- replace(rep(NA_real_, .N), firstd, cs[firstd - 1L])
k <- replace(rep(NA_real_, .N), firstd, rowid(trainer)[firstd - 1L])
newt <- which(trainer != shift(trainer))
prevTrainer <- replace(rep(NA_real_, .N), newt, cs[newt - 1L])
finishes <- cumfinishes - nafill(replace(prevTrainer, 1L, 0), "locf")
finishes <- replace(finishes, newt, NaN)
nafill(finishes, "locf") / nafill(k, "locf")
}]
的相同想法应该是最快且更易读:
Rcpp
答案 1 :(得分:1)
我认为不需要for
循环。我在这里使用magrittr::%>%
主要是因为我认为它有助于打破操作流程。不需要,并且可以轻松地将其转换为data.table
管道或类似的首选项。
library(data.table)
library(magrittr)
dt %>%
.[ order(date), ] %>%
.[, c("rate", "n") := .(cumsum(finish == 1), seq_len(.N)), by = .(trainer) ] %>%
.[, .(rate = max(rate) / max(n)), by = .(date, trainer) ] %>%
.[, date := shift(date, type = "lead"), by = .(trainer) ] %>%
merge(dt, ., by = c("trainer", "date"), all.x = TRUE) %>%
.[ order(-date), ]
# trainer date finish rate
# 1: a 2015-01-01 1 0.2000000
# 2: a 2015-01-01 2 0.2000000
# 3: a 2015-01-01 3 0.2000000
# 4: b 2015-01-01 4 0.2000000
# 5: b 2015-01-01 5 0.2000000
# 6: b 2015-01-01 1 0.2000000
# 7: c 2015-01-01 2 0.2000000
# 8: c 2015-01-01 3 0.2000000
# 9: c 2015-01-01 4 0.2000000
# 10: d 2015-01-01 5 0.2000000
# 11: d 2015-01-01 1 0.2000000
# 12: d 2015-01-01 2 0.2000000
# 13: e 2015-01-01 3 0.2000000
# 14: e 2015-01-01 4 0.2000000
# 15: e 2015-01-01 5 0.2000000
# 16: a 2014-01-01 5 0.1666667
# 17: a 2014-01-01 1 0.1666667
# 18: a 2014-01-01 2 0.1666667
# 19: b 2014-01-01 3 0.2500000
# 20: b 2014-01-01 4 0.2500000
# 21: b 2014-01-01 5 0.2500000
# 22: c 2014-01-01 1 0.1666667
# 23: c 2014-01-01 2 0.1666667
# 24: c 2014-01-01 3 0.1666667
# 25: d 2014-01-01 4 0.1666667
# 26: d 2014-01-01 5 0.1666667
# 27: d 2014-01-01 1 0.1666667
# 28: e 2014-01-01 2 0.2500000
# 29: e 2014-01-01 3 0.2500000
# 30: e 2014-01-01 4 0.2500000
# 31: a 2013-01-01 4 0.1111111
# 32: a 2013-01-01 5 0.1111111
# 33: a 2013-01-01 1 0.1111111
# 34: b 2013-01-01 2 0.3333333
# 35: b 2013-01-01 3 0.3333333
# 36: b 2013-01-01 4 0.3333333
# 37: c 2013-01-01 5 0.1111111
# 38: c 2013-01-01 1 0.1111111
# 39: c 2013-01-01 2 0.1111111
# 40: d 2013-01-01 3 0.2222222
# 41: d 2013-01-01 4 0.2222222
# 42: d 2013-01-01 5 0.2222222
# 43: e 2013-01-01 1 0.2222222
# 44: e 2013-01-01 2 0.2222222
# 45: e 2013-01-01 3 0.2222222
# 46: a 2012-01-01 3 0.1666667
# 47: a 2012-01-01 4 0.1666667
# 48: a 2012-01-01 5 0.1666667
# 49: b 2012-01-01 1 0.3333333
# 50: b 2012-01-01 2 0.3333333
# 51: b 2012-01-01 3 0.3333333
# 52: c 2012-01-01 4 0.0000000
# 53: c 2012-01-01 5 0.0000000
# 54: c 2012-01-01 1 0.0000000
# 55: d 2012-01-01 2 0.3333333
# 56: d 2012-01-01 3 0.3333333
# 57: d 2012-01-01 4 0.3333333
# 58: e 2012-01-01 5 0.1666667
# 59: e 2012-01-01 1 0.1666667
# 60: e 2012-01-01 2 0.1666667
# 61: a 2011-01-01 2 0.3333333
# 62: a 2011-01-01 3 0.3333333
# 63: a 2011-01-01 4 0.3333333
# 64: b 2011-01-01 5 0.3333333
# 65: b 2011-01-01 1 0.3333333
# 66: b 2011-01-01 2 0.3333333
# 67: c 2011-01-01 3 0.0000000
# 68: c 2011-01-01 4 0.0000000
# 69: c 2011-01-01 5 0.0000000
# 70: d 2011-01-01 1 0.3333333
# 71: d 2011-01-01 2 0.3333333
# 72: d 2011-01-01 3 0.3333333
# 73: e 2011-01-01 4 0.0000000
# 74: e 2011-01-01 5 0.0000000
# 75: e 2011-01-01 1 0.0000000
# 76: a 2010-01-01 1 NA
# 77: a 2010-01-01 2 NA
# 78: a 2010-01-01 3 NA
# 79: b 2010-01-01 4 NA
# 80: b 2010-01-01 5 NA
# 81: b 2010-01-01 1 NA
# 82: c 2010-01-01 2 NA
# 83: c 2010-01-01 3 NA
# 84: c 2010-01-01 4 NA
# 85: d 2010-01-01 5 NA
# 86: d 2010-01-01 1 NA
# 87: d 2010-01-01 2 NA
# 88: e 2010-01-01 3 NA
# 89: e 2010-01-01 4 NA
# 90: e 2010-01-01 5 NA
# trainer date finish rate
这一点是成功率取决于尝试次数中的获胜次数。为此,
trainer
分组,收集尝试次数(seq_len(.N)
)和获胜次数(cumsum(finish == 1)
); date, trainer
分组,用最大获胜次数与最大尝试次数之比汇总每个分组,以确保我们有“最后一天的结束”; date
,以便我们最终可以... merge
(加入)回到原始数据中,从而将“最后的已知日期”数据带到了今天,因此今天的比赛不会影响今天的罢工率临时({{1}之前)可能会很有见识,并且可以显示(em)显示 merge
(带日期的偏移),而不是像上面那样替换它。知道prevdate
是原始数据的prevdate
所连接的内容:
date
答案 2 :(得分:1)
由于本质上需要分组窗口功能,因此考虑使用split.data.table
(不要与base::split
混淆)来在一个循环中处理日期/培训员子集:
setindex(dt, date, trainer) # ADD FOR OTHER GROUPS
strike_rates_dt <- split(dt, by=c("date", "trainer")) # ADD FOR OTHER GROUPS
strike_rates_dt <- lapply(strike_rates_dt, function(sub) {
t <- sub$trainer[[1]] # ADD FOR OTHER GROUPS
d <- sub$date[[1]]
trainer_past_form <- dt[trainer==t & date < d] # ADD FOR OTHER GROUPS
sr <- sum(trainer_past_form$finish==1)/nrow(trainer_past_form)
sub[, strike_rate := sr] # SAVE AS NEW COLUMN
})
final_dt <- rbindlist(strike_rates_dt)[order(-date)]
时间表明嵌套for
循环方法存在明显差异:
方法
op_proc <- function() {
dt <- dt[order(-date)]
dates = as.character(unique(dt$date))
for (d in dates) {
trainers = unique(dt$trainer[dt$date==d])
for (t in trainers) {
trainer_past_form = dt[trainer==t & date < d]
strike_rate = sum(trainer_past_form$finish==1)/nrow(trainer_past_form)
# save this strike rate for this day and this trainer
dt$strike_rate[dt$trainer==t & dt$date==d] <- strike_rate
}
}
return(dt)
}
my_proc <- function() {
strike_rates_dt <- split(dt, by=c("date", "trainer"))
strike_rates_dt <- lapply(strike_rates_dt, function(sub) {
t <- sub$trainer[[1]]
d <- sub$date[[1]]
trainer_past_form <- dt[trainer==t & date < d]
sr <- sum(trainer_past_form$finish==1)/nrow(trainer_past_form)
sub[, strike_rate := sr]
})
final_dt <- rbindlist(strike_rates_dt)[order(-date)]
}
n = 90
时间
# Unit: milliseconds
# expr min lq mean median uq max neval
# op_dt <- op_proc() 57.02562 59.13524 60.13463 59.73631 60.56061 77.34649 100
# Unit: milliseconds
# expr min lq mean median uq max neval
# my_dt <- my_proc() 46.11871 46.67702 48.891 48.67245 49.64088 59.61806 100
n = 900
时间
# Unit: milliseconds
# expr min lq mean median uq max neval
# op_dt <- op_proc() 58.07979 59.83595 62.24291 60.26232 60.73125 229.4492 100
# Unit: milliseconds
# expr min lq mean median uq max neval
# my_dt <- my_proc() 45.06198 47.09655 48.00078 47.40018 47.93625 53.7639 100
n = 9000
时间
# Unit: milliseconds
# expr min lq mean median uq max neval
# op_dt <- op_proc() 66.31556 67.07828 68.20643 67.32226 68.23552 82.22218 100
# Unit: milliseconds
# expr min lq mean median uq max neval
# my_dt <- my_proc() 50.05955 51.42313 52.81052 51.73318 54.23603 61.34065 100
n = 90000
时间
# Unit: milliseconds
# expr min lq mean median uq max neval
# op_dt <- op_proc() 134.3456 137.7812 148.0204 139.4907 142.4315 356.7175 100
# Unit: milliseconds
# expr min lq mean median uq max neval
# my_dt <- my_proc() 87.33779 91.21512 105.1705 92.20642 94.82666 269.798 100