我在这里遵循代码:
https://www.kaggle.com/tanlikesmath/diabetic-retinopathy-with-resnet50-oversampling
但是,在指标计算过程中,出现以下错误:
concurrent.futures._base.TimeoutError
以下是指标和模型:
File "main.py", line 50, in <module>
learn.fit_one_cycle(4,max_lr = 2e-3)
...
File "main.py", line 39, in quadratic_kappa
return torch.tensor(cohen_kappa_score(torch.argmax(y_hat,1), y, weights='quadratic'),device='cuda:0')
...
File "/pfs/work7/workspace/scratch/ul_dco32-conda-0/conda/envs/resnet50/lib/python3.8/site-packages/torch/tensor.py", line 486, in __array__
return self.numpy()
TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
正如在讨论def quadratic_kappa(y_hat, y):
return torch.tensor(cohen_kappa_score(torch.argmax(y_hat,1), y, weights='quadratic'),device='cuda:0')
learn = cnn_learner(data, models.resnet50, metrics = [accuracy,quadratic_kappa])
learn.fit_one_cycle(4,max_lr = 2e-3)
中所说的那样,我必须将数据带回到https://discuss.pytorch.org/t/typeerror-can-t-convert-cuda-tensor-to-numpy-use-tensor-cpu-to-copy-the-tensor-to-host-memory-first/32850/6
。但是我有点不知道该怎么做。
我试图在所有指标中添加cpu
,但到目前为止仍无法解决。
答案 0 :(得分:1)
我假设y
和y_hat
都是CUDA张量,这意味着您需要将cohen_kappa_score
而不是仅仅将它们都带到CPU。
def quadratic_kappa(y_hat, y):
return torch.tensor(cohen_kappa_score(torch.argmax(y_hat.cpu(),1), y.cpu(), weights='quadratic'),device='cuda:0')
# ^^^ ^^^
在已经在CPU上的张量上调用.cpu()
无效,因此在任何情况下都可以安全使用。