根据问题TypeError: 'Keyword argument not understood:', 'padding',当将Keras 1与Keras 2混合时会发生此错误。
但是,就我而言,我确定我没有这个问题。或者至少它不应该来自我。
我正在训练一个来自tensorflow-models
的模型,如下所示:
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = transformer.create_model(params, is_train=True)
optimizer = tf.keras.optimizers.Adam(0.001)
model.compile(
optimizer=optimizer,
loss='categorical_crossentropy'
)
callbacks = [
tf.keras.callbacks.TensorBoard(log_dir=model_dir),
tf.keras.callbacks.ModelCheckpoint(
os.path.join(model_dir, 'model-{epoch:06d}'), # 'model-{epoch:09d}-{val_loss:.2f}.hdf5'),
monitor='val_loss',
save_best_only=True,
save_weights_only=False
),
MyCustomCallback(model_dir=model_dir)
]
model.fit(
train_dataset,
epochs=1000,
steps_per_epoch=2,
validation_data=dev_dataset,
validation_steps=10,
callbacks=callbacks
)
我正在尝试像这样加载它:
import os
import tensorflow as tf
from absl import logging
def main():
model_dir = '/data/asr/models/transformer-translation-v2'
model = tf.keras.models.load_model(os.path.join(model_dir, 'model-000001'))
print('All done.')
if __name__ == '__main__':
logging.set_verbosity(logging.INFO)
main()
但是,出现以下错误:
TypeError :(“关键字参数无法理解:”,“ hidden_size”)
您知道如何解决此问题吗?