TypeError :(“关键字参数无法理解:”,“ hidden_​​size”)

时间:2020-04-10 10:45:25

标签: python tensorflow tensorflow2.0

根据问题TypeError: 'Keyword argument not understood:', 'padding',当将Keras 1与Keras 2混合时会发生此错误。

但是,就我而言,我确定我没有这个问题。或者至少它不应该来自我。

我正在训练一个来自tensorflow-models的模型,如下所示:

strategy = tf.distribute.MirroredStrategy()

with strategy.scope():

    model = transformer.create_model(params, is_train=True)
    optimizer = tf.keras.optimizers.Adam(0.001)
    model.compile(
        optimizer=optimizer,
        loss='categorical_crossentropy'
    )

    callbacks = [
        tf.keras.callbacks.TensorBoard(log_dir=model_dir),
        tf.keras.callbacks.ModelCheckpoint(
            os.path.join(model_dir, 'model-{epoch:06d}'),  # 'model-{epoch:09d}-{val_loss:.2f}.hdf5'),
            monitor='val_loss',
            save_best_only=True,
            save_weights_only=False
        ),
        MyCustomCallback(model_dir=model_dir)
    ]

    model.fit(
        train_dataset,
        epochs=1000,
        steps_per_epoch=2,
        validation_data=dev_dataset,
        validation_steps=10,
        callbacks=callbacks
    )

我正在尝试像这样加载它:

import os

import tensorflow as tf
from absl import logging


def main():
    model_dir = '/data/asr/models/transformer-translation-v2'
    model = tf.keras.models.load_model(os.path.join(model_dir, 'model-000001'))
    print('All done.')


if __name__ == '__main__':
    logging.set_verbosity(logging.INFO)
    main()

但是,出现以下错误:

TypeError :(“关键字参数无法理解:”,“ hidden_​​size”)

您知道如何解决此问题吗?

0 个答案:

没有答案