示例DataFrame:
>>> idx = pd.MultiIndex.from_arrays([['foo', 'foo', 'bar', 'bar'], ['one', 'two', 'one', 'two']])
>>> df = pd.DataFrame({'Col1': [('a', 'b'), 'c', 'd', 'e'], 'Col2': [('A', 'B'), 'C', 'D', 'E']}, index=index)
>>> print(df)
Col1 Col2
foo one (a, b) (A, B)
two c C
bar one d D
two e E
我想通过拆开元组的行来变换DataFrame,同时将所有内容保持在其原始索引下,结果如下:
Col1 Col2
foo one 0 a A
1 b B
two 0 c C
bar one 0 d D
two 0 e E
我可以很好地打开元组的包装,但是我很难确定如何将新行重新插入到DataFrame中。这是我已经尝试过的示例:
>>> unpacked = pd.DataFrame(df.loc['foo', 'one'].tolist(), index=df.columns).T
>>> print(unpacked)
Col1 Col2
0 a A
1 b B
>>> df.loc['foo', 'one'] = unpacked
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Program Files\Python37\lib\site-packages\pandas\core\indexing.py", line 190, in __setitem__
self._setitem_with_indexer(indexer, value)
File "C:\Program Files\Python37\lib\site-packages\pandas\core\indexing.py", line 645, in _setitem_with_indexer
value = self._align_frame(indexer, value)
File "C:\Program Files\Python37\lib\site-packages\pandas\core\indexing.py", line 860, in _align_frame
raise ValueError('Incompatible indexer with DataFrame')
ValueError: Incompatible indexer with DataFrame
很明显为什么失败了,但是我不确定从这里去哪里。是否可以在此过程中创建新的MultiIndex级别,以处理任意数量的未打包行?
答案 0 :(得分:1)
在列表理解中使用Series.explode
使用concat
,然后通过GroupBy.cumcount
添加新级别:
df = pd.concat([df[x].explode() for x in df.columns], axis=1)
df = df.set_index(df.groupby(df.index).cumcount(), append=True)
print (df)
Col1 Col2
foo one 0 a A
1 b B
two 0 c C
bar one 0 d D
two 0 e E