我想创建一个数据集,其中包含从网站抓取的信息。我在下面解释我做了什么以及预期的输出。我得到行和列的空数组,然后是整个数据集,我不明白原因。我希望你能帮助我。
1)创建一个只有一列的空数据框:此列应包含要使用的网址列表。
data_to_use = pd.DataFrame([], columns=['URL'])
2)从以前的数据集中选择网址。
select_urls=dataset.URL.tolist()
这组网址看起来像:
URL
0 www.bbc.co.uk
1 www.stackoverflow.com
2 www.who.int
3 www.cnn.com
4 www.cooptrasportiriolo.it
... ...
3)使用以下网址填充列:
data_to_use['URL']= select_urls
data_to_use['URLcleaned'] = data_to_use['URL'].str.replace('^(www\.)', '')
4)选择一个随机样本进行测试:列50
中的前URL
行
data_to_use = data_to_use.loc[1:50, 'URL']
5)尝试抓取信息
import requests
import time
from bs4 import BeautifulSoup
urls= data_to_use['URLcleaned'].tolist()
ares = []
for u in urls: # in the selection there should be an error. I am not sure that I am selecting the rig
print(u)
url = 'https://www.urlvoid.com/scan/'+ u
r = requests.get(url)
ares.append(r)
rows = []
cols = []
for ar in ares:
soup = BeautifulSoup(ar.content, 'lxml')
tab = soup.select("table.table.table-custom.table-striped")
try:
dat = tab[0].select('tr')
line= []
header=[]
for d in dat:
row = d.select('td')
line.append(row[1].text)
new_header = row[0].text
if not new_header in cols:
cols.append(new_header)
rows.append(line)
except IndexError:
continue
print(rows) # this works fine. It prints the rows. The issue comes from the next line
data_to_use = pd.DataFrame(rows,columns=cols)
不幸的是,上述步骤有问题,因为我没有得到任何结果,而只有[]
或__
。
来自data_to_use = pd.DataFrame(rows,columns=cols)
的错误:
ValueError: 1 columns passed, passed data had 12 columns
我的预期输出将是:
URL Website Address Last Analysis Blacklist Status \
bbc.co.uk Bbc.co.uk 9 days ago 0/35
stackoverflow.com Stackoverflow.com 7 days ago 0/35
Domain Registration IP Address Server Location ...
996-08-01 | 24 years ago 151.101.64.81 (US) United States ...
2003-12-26 | 17 years ago ...
最后,我应该将创建的数据集保存在csv文件中。
答案 0 :(得分:1)
Yon只能使用熊猫来做到这一点。尝试以下代码。
urllist=[ 'bbc.co.uk','stackoverflow.com','who.int','cnn.com']
dffinal=pd.DataFrame()
for url in urllist:
df=pd.read_html("https://www.urlvoid.com/scan/" + url + "/")[0]
list = df.values.tolist()
rows = []
cols = []
for li in list:
rows.append(li[1])
cols.append(li[0])
df1=pd.DataFrame([rows],columns=cols)
dffinal = dffinal.append(df1, ignore_index=True)
print(dffinal)
dffinal.to_csv("domain.csv",index=False)
Csv快照:
快照。
Csv文件。
try..except
阻止了更新。
urllist=['gov.ie','','who.int', 'comune.staranzano.go.it', 'cooptrasportiriolo.it', 'laprovinciadicomo.it', 'asufc.sanita.fvg.it', 'canale7.tv', 'gradenigo.it', 'leggo.it', 'urbanpost.it', 'monitorimmobiliare.it', 'comune.villachiara.bs.it', 'ilcittadinomb.it', 'europamulticlub.com']
dffinal=pd.DataFrame()
for url in urllist:
try:
df=pd.read_html("https://www.urlvoid.com/scan/" + url + "/")[0]
list = df.values.tolist()
rows = []
cols = []
for li in list:
rows.append(li[1])
cols.append(li[0])
df1=pd.DataFrame([rows],columns=cols)
dffinal = dffinal.append(df1, ignore_index=True)
except:
continue
print(dffinal)
dffinal.to_csv("domain.csv",index=False)
控制台:
Website Address ... Region
0 Gov.ie ... Dublin
1 Who.int ... Geneva
2 Comune.staranzano.go.it ... Unknown
3 Cooptrasportiriolo.it ... Unknown
4 Laprovinciadicomo.it ... Unknown
5 Canale7.tv ... Unknown
6 Leggo.it ... Milan
7 Urbanpost.it ... Ile-de-France
8 Monitorimmobiliare.it ... Unknown
9 Comune.villachiara.bs.it ... Unknown
10 Ilcittadinomb.it ... Unknown
[11 rows x 12 columns]
答案 1 :(得分:0)
只需添加到@KunduK的解决方案即可。您可以使用熊猫的.T
(转置函数)压缩部分代码。
因此,您可以打开此部分:
df=pd.read_html("https://www.urlvoid.com/scan/" + url + "/")[0]
list = df.values.tolist()
rows = []
cols = []
for li in list:
rows.append(li[1])
cols.append(li[0])
df1=pd.DataFrame([rows],columns=cols)
dffinal = dffinal.append(df1, ignore_index=True)
简单地:
df=pd.read_html("https://www.urlvoid.com/scan/" + url + "/")[0].set_index(0).T
dffinal = dffinal.append(df, ignore_index=True)
答案 2 :(得分:0)
不考虑转换为csv,让我们这样尝试:
urls=['gov.ie', 'who.int', 'comune.staranzano.go.it', 'cooptrasportiriolo.it', 'laprovinciadicomo.it', 'asufc.sanita.fvg.it', 'canale7.tv', 'gradenigo.it', 'leggo.it', 'urbanpost.it', 'monitorimmobiliare.it', 'comune.villachiara.bs.it', 'ilcittadinomb.it', 'europamulticlub.com']
ares = []
for u in urls:
url = 'https://www.urlvoid.com/scan/'+u
r = requests.get(url)
ares.append(r)
请注意,其中3个网址没有数据,因此数据框中应该只有11行。 下一个:
rows = []
cols = []
for ar in ares:
soup = bs(ar.content, 'lxml')
tab = soup.select("table.table.table-custom.table-striped")
if len(tab)>0:
dat = tab[0].select('tr')
line= []
header=[]
for d in dat:
row = d.select('td')
line.append(row[1].text)
new_header = row[0].text
if not new_header in cols:
cols.append(new_header)
rows.append(line)
my_df = pd.DataFrame(rows,columns=cols)
my_df.info()
输出:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11 entries, 0 to 10
Data columns (total 12 columns):
Website Address 11 non-null object
Last Analysis 11 non-null object
Blacklist Status 11 non-null object
Domain Registration 11 non-null object
Domain Information 11 non-null object
IP Address 11 non-null object
Reverse DNS 11 non-null object
ASN 11 non-null object
Server Location 11 non-null object
Latitude\Longitude 11 non-null object
City 11 non-null object
Region 11 non-null object
dtypes: object(12)
memory usage: 1.2+ KB