用列替换数据框的索引

时间:2020-04-07 23:15:53

标签: pandas dataframe

我有这样的数据框:


                    A            B             C                                  X          Y           Z
date                                              
2019-01-31  36.702825     8.831252      9.124721  ...                    15.756895   23.751749    14.302236
2019-02-28  21.504067    14.770565     13.041766  ...                    13.943546   14.926297    10.217897
2019-03-31  20.078406    12.043094     10.554525  ...                    14.639879   16.181830     9.323363
2019-04-30  27.999145    20.750256     14.764175  ...                    19.198583   34.720155    14.848743
2019-05-31  41.000193    32.882699     22.216196  ...                    12.456686   25.575870    23.992338
2019-06-30  40.556729    23.978055     19.153607  ...                     6.842362   16.513900    15.272578
2019-07-31  29.078029    17.985517     14.643413  ...                     3.050022    8.132830    16.308373
2019-08-31  27.112164     9.858052      8.937836  ...                     2.262817    7.479062     5.585339
2019-09-30  20.024406     9.447190     14.392237  ...                     5.294295   12.842446     5.903679
2019-10-31  22.915759    13.837986     14.953670  ...                     8.535875   17.521138    11.786335
2019-11-30  34.703259    15.155604     14.417056  ...                    13.144339   22.338212    11.466941
2019-12-31  46.503348    13.743729     14.931167  ...                    19.290583   32.929933    10.952393
2020-01-31  29.675003     8.379851     14.468729  ...                    15.650744   16.282521     7.096934
2020-02-29  30.004760    13.031752     11.191522  ...                    21.680589   14.149599     8.901123 

我想逐一检查。我想对每个索引执行此过程。为了说明一个索引:

    2020-02-29
A    30.004760
B    13.031752
C    11.191522
.      .
.      .
.      .
X    21.680589 
Y    14.149599
Z     8.901123

如何获得此输出?

1 个答案:

答案 0 :(得分:0)

如果您希望将其作为数据框,则可以执行以下操作:

for idx, row in df.iterrows():
    row_df = pd.DataFrame(row)