Keras的输出顺序预测_生成器

时间:2020-04-07 20:01:58

标签: r tensorflow keras

我关注了有关在R中使用Keras进行图像识别的在线教程,最后给出了以下代码:

library(keras)

view_list <- c("Inside", "Outside")
output_n <- length(view_list)

# image size to scale down to (original images are 100 x 100 px)
img_width <- 20
img_height <- 20
target_size <- c(img_width, img_height)

# RGB = 3 channels
channels <- 3

train_image_files_path <- "C:/Users/Tomek/Desktop/Photos"
valid_image_files_path <- "C:/Users/Tomek/Desktop/Photos valid"
test_image_files_path <- "C:/Users/Tomek/Desktop/Photos test"

# optional data augmentation
train_data_gen = image_data_generator(rescale = 1/255 )

# Validation data shouldn't be augmented! But it should also be scaled.
valid_data_gen <- image_data_generator(rescale = 1/255)  
test_data_gen <- image_data_generator(rescale = 1/255) 

# training images
train_image_array_gen <- flow_images_from_directory(train_image_files_path, 
                                                    train_data_gen,
                                                    target_size = target_size,
                                                    class_mode = "categorical",
                                                    classes = view_list,
                                                    seed = 42)


# validation images
valid_image_array_gen <- flow_images_from_directory(valid_image_files_path, 
                                                    valid_data_gen,
                                                    target_size = target_size,
                                                    class_mode = "categorical",
                                                    classes = view_list,
                                                    seed = 42)

# test images
test_image_array_gen <- flow_images_from_directory(test_image_files_path, 
                                                   test_data_gen,
                                                   target_size = target_size,
                                                   class_mode = "categorical",
                                                   classes = view_list,
                                                   seed = 42)

cat("Number of images per class:")
table(factor(train_image_array_gen$classes))
train_image_array_gen$class_indices

views_classes_indices <- train_image_array_gen$class_indices
save(views_classes_indices, file = "C:/Users/Tomek/Desktop/views_classes_indices.RData")

# number of training samples
train_samples <- train_image_array_gen$n
# number of validation samples
valid_samples <- valid_image_array_gen$n
# number of test samples
test_samples <- test_image_array_gen$n

# define batch size and number of epochs
batch_size <- 1
epochs <- 10

# initialise model
model <- keras_model_sequential()

# add layers
model %>%
  layer_conv_2d(filter = 32, kernel_size = c(3,3), padding = "same", input_shape = c(img_width, img_height, channels)) %>%
  layer_activation("relu") %>%

  # Second hidden layer
  layer_conv_2d(filter = 16, kernel_size = c(3,3), padding = "same") %>%
  layer_activation_leaky_relu(0.5) %>%
  layer_batch_normalization() %>%

  # Use max pooling
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_dropout(0.25) %>%

  # Flatten max filtered output into feature vector 
  # and feed into dense layer
  layer_flatten() %>%
  layer_dense(100) %>%
  layer_activation("relu") %>%
  layer_dropout(0.5) %>%

  # Outputs from dense layer are projected onto output layer
  layer_dense(output_n) %>% 
  layer_activation("softmax")

# compile
model %>% compile(
  loss = "categorical_crossentropy",
  optimizer = optimizer_rmsprop(lr = 0.0001, decay = 1e-6),
  metrics = "accuracy"
)

summary(model)

# fit
hist <- model %>% fit_generator(
  # training data
  train_image_array_gen,

  # epochs
  steps_per_epoch = as.integer(train_samples / batch_size), 
  epochs = epochs, 

  # validation data
  validation_data = valid_image_array_gen,
  validation_steps = as.integer(valid_samples / batch_size),

  # print progress
  verbose = 2,
  callbacks = list(
    # save best model after every epoch
    callback_model_checkpoint("C:/Users/Tomek/Desktop/views_checkpoints.h5", save_best_only = TRUE),
    # only needed for visualising with TensorBoard
    callback_tensorboard(log_dir = "C:/Users/Tomek/Desktop/keras/logs")
  )
)
plot(hist)

#prediction
a <- model %>% predict_generator(test_image_array_gen, steps = 5, verbose = 1, workers = 1)
a <- round(a, digits = 4)

分类模型(具有两个输出类)似乎工作得很好。火车和验证集的准确性分别等于〜99%和〜95%。但是,我不确定测试集上的预测结果。看来对观察的预测被打乱了,我无法找到一种方法来检查哪个预测是指哪个图像(观测)。我在该问题上看到了一些话题:github medium 1 medium 2

尽管如此,我真的是Keras和Python的新手,我很难在R中应用建议的解决方案。要跟踪哪个预测是指预测_生成器输出中的测试集中哪个图像的最简单方法是什么?

1 个答案:

答案 0 :(得分:2)

我知道了,答案很简单。改组是由参数改组引起的,该参数默认设置为true。更改后,预测与 test_image_array_gen $ filenames 的顺序相对应。但是,请记住,预测(和文件名)的顺序与Windows上的顺序不同,这可能会造成混淆。

在Windows中订购:照片1照片2 ...照片10照片11

R中的顺序:照片1照片10照片11 ...照片2

isAuth