Coq中分号的奇怪行为

时间:2011-05-23 22:36:29

标签: coq

我在理解为什么我的Coq代码没有达到我在下面的代码中的预期时遇到了问题。

  • 我试图让这个例子尽可能地简化,但是当我把它变得更简单时,问题就不再出现了。
  • 它正在使用CompCert 1.8文件。
  • 在Coq 8.2-pl2下发生了这件事。

以下是代码:

Require Import Axioms.
Require Import Coqlib.
Require Import Integers.
Require Import Values.
Require Import Asm.

Definition foo (ofs: int) (c: code) : Prop :=
  c <> nil /\ ofs <> Int.zero.

Inductive some_prop: nat -> Prop :=
| some_prop_ctor :
  forall n other_n ofs c lo hi ofs_ra ofs_link,
    some_prop n ->
    foo ofs c ->
    find_instr (Int.unsigned ofs) c <> Some (Pallocframe lo hi ofs_ra ofs_link) ->
    find_instr (Int.unsigned ofs) c <> Some (Pfreeframe lo hi ofs_ra ofs_link) ->
    some_prop other_n
.

Lemma simplified:
  forall n other_n ofs c,
  some_prop n ->
  foo ofs c ->
  find_instr (Int.unsigned ofs) c = Some Pret ->
  some_prop other_n.
Proof.
  intros.

这不起作用:

  eapply some_prop_ctor
    with (lo:=0) (hi:=0) (ofs_ra:=Int.zero) (ofs_link:=Int.zero);
      eauto; rewrite H1; discriminate.

rewrite H1上失败:

Error:
Found no subterm matching "find_instr (Int.unsigned ofs) c" in the current goal.

但这有效:

  eapply some_prop_ctor
    with (lo:=0) (hi:=0) (ofs_ra:=Int.zero) (ofs_link:=Int.zero);
      eauto.
  rewrite H1; discriminate.
  rewrite H1; discriminate.
Qed.

此外,在eauto之后,我的目标如下:

2 subgoals
n : nat
other_n : nat
ofs : int
c : code
H : some_prop n
H0 : foo ofs c
H1 : find_instr (Int.unsigned ofs) c = Some Pret
______________________________________(1/2)
find_instr (Int.unsigned ofs) c <> Some (Pallocframe 0 0 Int.zero Int.zero)


______________________________________(2/2)
find_instr (Int.unsigned ofs) c <> Some (Pfreeframe 0 0 Int.zero Int.zero)

因此,rewrite H1; discriminate两次有效,但使用分号在eauto之后“管道”它不起作用。

我希望这个问题至少有意义。谢谢!


完整代码:

Require Import Axioms.
Require Import Coqlib.
Require Import Integers.
Require Import Values.
Require Import Asm.

Definition foo (ofs: int) (c: code) : Prop :=
  c <> nil /\ ofs <> Int.zero.

Inductive some_prop: nat -> Prop :=
| some_prop_ctor :
  forall n other_n ofs c lo hi ofs_ra ofs_link,
    some_prop n ->
    foo ofs c ->
    find_instr (Int.unsigned ofs) c <> Some (Pallocframe lo hi ofs_ra ofs_link) ->
    find_instr (Int.unsigned ofs) c <> Some (Pfreeframe lo hi ofs_ra ofs_link) ->
    some_prop other_n
.

Lemma simplified:
  forall n other_n ofs c,
  some_prop n ->
  foo ofs c ->
  find_instr (Int.unsigned ofs) c = Some Pret ->
  some_prop other_n.
Proof.
  intros.
(*** This does not work:
  eapply some_prop_ctor
    with (lo:=0) (hi:=0) (ofs_ra:=Int.zero) (ofs_link:=Int.zero);
      eauto; rewrite H1; discriminate.
***)
  eapply some_prop_ctor
    with (lo:=0) (hi:=0) (ofs_ra:=Int.zero) (ofs_link:=Int.zero);
      eauto.    
  rewrite H1; discriminate.
  rewrite H1; discriminate.
Qed.

1 个答案:

答案 0 :(得分:3)

所以,这可能是我自己问题的答案(感谢#coq IRC频道上的某人):

可能是存在变量的统一直到.才会发生的情况。 因此,通过分号,我可能会阻止ofsc统一。

我发现虽然写作...; eauto; subst; rewrite H1; discriminate.会起作用。在这种情况下,subst会强制存在变量的统一,从而解锁重写的能力。