在拟合和预测模型之前,如何将logit传递给sigmoid_cross_entropy_with_logits?

时间:2020-04-03 13:14:07

标签: tensorflow machine-learning keras multilabel-classification

由于我需要训练带有多个标签的模型,因此需要使用损失function tf.nn.sigmoid_cross_entropy_with_logits。此函数有两个参数:logitsloss

参数logitsis是预测y的值吗?在编译模型之前如何传递此值?在编译和拟合模型之前我无法预测y,对吧?

这是我的代码:

import tensorflow as tf
from tensorflow import keras

model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]), 
                            keras.layers.Dense(30, activation='relu'),
                            keras.layers.Dense(50, activation='tanh'),
                            keras.layers.Dense(100, activation='relu'),
                            keras.layers.Dense(8)])

model.compile(optimizer='rmsprop', 
              loss=tf.nn.sigmoid_cross_entropy_with_logits(logits=y_pred), labels=y),   # <---How to figure out y_pred here?
              metrics=['accuracy'])
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)  # <--- Now I got y_pred after compile, fit and predict

我正在使用tensorflow v2.1.0

1 个答案:

答案 0 :(得分:2)

这些参数(labelslogits)被传递给Keras实现中的损失函数。要使代码正常工作,请执行以下操作:

import tensorflow as tf
from tensorflow import keras


def loss_fn(y_true, y_pred):
    return tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_pred)

model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]), 
                          keras.layers.Dense(30, activation='relu'),
                          keras.layers.Dense(50, activation='tanh'),
                          keras.layers.Dense(100, activation='relu'),
                          keras.layers.Dense(8)])

model.compile(optimizer='rmsprop', 
              loss=loss_fn,
              metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)

但是,建议的方法是改用Keras的损失实现。在您的情况下,将是:

model = keras.Sequential([keras.layers.Dense(50, activation='tanh', input_shape=[100]), 
                          keras.layers.Dense(30, activation='relu'),
                          keras.layers.Dense(50, activation='tanh'),
                          keras.layers.Dense(100, activation='relu'),
                          keras.layers.Dense(8)])

model.compile(optimizer='rmsprop', 
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=['accuracy'])
x = np.random.normal(0, 1, (64, 100))
y = np.random.randint(0, 2, (64, 8)).astype('float32')
model.fit(x, y, epochs=10, batch_size=32)
y_pred = model.predict(x)