错误:缺少参数“ x”,没有默认值?

时间:2020-03-24 12:31:22

标签: r machine-learning xgboost r-caret mlr

作为XGBoost的新手,我试图使用 mlr 库和模型来调整参数,但是在使用setHayperPars()后,使用train()学习会引发错误(特别是当我运行< strong> xgmodel 行): colnames(x)中的错误:缺少参数“ x”,没有默认值,而且我无法识别此错误的含义,下面是代码:

library(mlr)     
library(dplyr)
library(caret) 
library(xgboost)

set.seed(12345)
n=dim(mydata)[1]
id=sample(1:n, floor(n*0.6)) 
train=mydata[id,]
test=mydata[-id,]

traintask = makeClassifTask (data = train,target = "label")
testtask = makeClassifTask (data = test,target = "label")

#create learner
lrn = makeLearner("classif.xgboost",
                   predict.type = "response")

lrn$par.vals = list( objective="multi:softprob",
                      eval_metric="merror")

#set parameter space
params = makeParamSet( makeIntegerParam("max_depth",lower = 3L,upper = 10L),
                       makeIntegerParam("nrounds",lower = 20L,upper = 100L),
                       makeNumericParam("eta",lower = 0.1, upper = 0.3),
                       makeNumericParam("min_child_weight",lower = 1L,upper = 10L), 
                       makeNumericParam("subsample",lower = 0.5,upper = 1), 
                       makeNumericParam("colsample_bytree",lower = 0.5,upper = 1)) 


#set resampling strategy

configureMlr(show.learner.output = FALSE, show.info = FALSE)

rdesc = makeResampleDesc("CV",stratify = T,iters=5L)

# set the search optimization strategy

ctrl = makeTuneControlRandom(maxit = 10L)

# parameter tuning

set.seed(12345)

mytune = tuneParams(learner = lrn, task = traintask, 
                    resampling = rdesc, measures = acc, 
                    par.set = params, control = ctrl,
                    show.info = FALSE)


# build model using the tuned paramters 

#set hyperparameters
lrn_tune = setHyperPars(lrn,par.vals = mytune$x)

#train model
xgmodel = train(learner = lrn_tune,task = traintask)

谁能告诉我这是怎么回事!?

1 个答案:

答案 0 :(得分:4)

在加载可能涉及相同名称的方法的多个程序包时,必须非常小心[em] -这里的caretmlr都包含一个{{1} } 方法。此外,train语句的 order 很重要:在这里,由于librarycaret之后加载,因此它掩盖了具有相同名称的函数(并且可能是之前加载的所有其他软件包),例如mlr

在您的情况下,您显然想使用train中的train方法(而不是mlr中的方法),则应在代码中明确声明:

caret