我正在尝试使用tidymodels框架为随机森林回归问题找到正确的参数。
关注我的代码是
#create recepie on the preped house train data
rf_rec <-
recipe(log_sale_price ~. , data = house_train_treebased)
#give model spec
rf_mod <-
rand_forest(mtry = tune(), num.trees = tune()) %>%
set_engine("ranger")
#create Search grid
rf_grid <- expand.grid(mtry = c(1:30), num.trees = seq(from = 500, to = 1000, by = 100))
#create samples for cross validation
folds <- vfold_cv(house_train_treebased, v = 25)
#create models with grid search
rf_res <-
tune_grid(rf_rec, model = rf_mod, resamples = folds , grid = rf_grid)
我收到以下错误:
> rf_mod <-
+ rand_forest(mtry = tune(), num.trees = tune()) %>%
+ set_engine("ranger")
Error in rand_forest(mtry = tune(), num.trees = tune()) :
unused argument (num.trees = tune())
rf_res <-
+ tune_grid(rf_rec, model = rf_mod, resamples = folds , grid = rf_grid)
Error: Internal error: `check_installs()` should have caught an `unknown` mode.
我想念什么?
答案 0 :(得分:1)
假设您正在使用parsnip
包,函数调用rand_forest
的参数为trees
,但是您指定的参数num.trees
无法识别。尝试将num.trees = tune()
替换为trees = tune()
。
答案 1 :(得分:0)
我在以下链接中查看了github
https://rdrr.io/github/tidymodels/tune/src/R/checks.R
check_metrics <- function(x, object) {
mode <- workflows::pull_workflow_spec(object)$mode
if (is.null(x)) {
switch(
mode,
regression = {
x <- yardstick::metric_set(rmse, rsq)
},
classification = {
x <- yardstick::metric_set(roc_auc, accuracy)
},
unknown = {
rlang::abort("Internal error: `check_installs()` should have caught an `unknown` mode.")
},
rlang::abort("Unknown `mode` for parsnip model.")
)
return(x)
}
我没有提供模式,即是否需要回归或分类。