我有两列EndTime
和+------------+--------------------------------+-------------------------------+
| | StartTime | EndTime |
+------------+--------------------------------+-------------------------------+
| 25 | 2018-05-17 11:52:21.769491600 | 2018-05-17 23:08:35.731376400 |
| 32 | 2018-05-19 14:22:24.141359000 | 2018-05-19 18:37:04.003643800 |
| 42 | 2018-05-22 08:25:01.015975500 | 2018-05-22 22:32:34.249869500 |
| 43 | 2018-05-22 08:46:06.187427200 | 2018-05-22 21:29:17.397438000 |
| 44 | 2018-05-22 13:38:37.289871700 | 2018-05-22 18:38:36.498623500 |
+------------+--------------------------------+-------------------------------+
,我需要选择7-9和18-20之间发生的事件。到目前为止,我尝试过的是:
df = df[((df['start_hr']<=7) & (df['end_hr']>=9)) | ((df['start_hr']<=18) & (df['end_hr']>=20))]
我从数据中提取了小时数,并用它们来计算跟踪次数
{{1}}
是否有更准确,更快速的替代方法?
答案 0 :(得分:1)
这会增加一段时间的内存消耗,但是您可以执行以下操作,在其中创建两个临时列并在它们上使用“ df.query”。确保稍后删除列。
df = df.assign(start_hr=df.start_hr.dt.hour, end_hr=df.end_hr.dt.hour)
df.query('(start_hr <= 7 and end_hr >=9) or (start_hr <= 18 and end_hr >=20) ')
答案 1 :(得分:0)
您可以使用此:
df['start_hr'] = pd.to_datetime(df['start_hr'])
df['end_hr'] = pd.to_datetime(df['end_hr'])
df['start_hr_day'] = df['start_hr'].dt.day
df['end_hr_day'] = df['start_hr'].dt.day
df.loc[((df['start_hr_day']<=7) & (df['end_hr_day']>=9))|((df['start_hr_day']<=18) & (df['end_hr_day']>=20))]