njit numba函数的高级索引选择

时间:2020-03-09 23:10:28

标签: python numpy numba

给出以下最小的可重现示例:

import numpy as np
from numba import jit

# variable number of dimensions
n_t = 8
# q is just a partition of n
q_ddl = 2
n_ddl = 3

np.random.seed(42)
df = np.random.rand(q_ddl*n_t,q_ddl*n_t)

# index array
# ddl_nl is a set of np.arange(n_ddl), ex: [0,1] ; [0,2] or even [0] ...
ddl_nl = np.array([0,1])
ij = np.asarray(np.meshgrid(ddl_nl,ddl_nl,indexing='ij'))

@jit(nopython=True)
def foo(df,ij):
    out = np.zeros((n_t,n_ddl,n_ddl))
    for i in range(0,n_t):     
        d_i = np.zeros((n_ddl,n_ddl))
        # (q_ddl,q_ddl) non zero values into (n_ddl,n_ddl) shape
        d_i[ij[0], ij[1]] = df[i::n_t,i::n_t]
        # to check possible solutions
        out[i,...] = d_i
    return out


out_foo = foo(df,ij)

在禁用foo的情况下,函数@jit(nopython=True)正常工作,但是在启用时会引发以下错误:

TypeError: unsupported array index type array(int64, 2d, C) in UniTuple(array(int64, 2d, C) x 2)

发生在广播操作d_i[ij[0], ij[1]] = df[i::n_t,i::n_t]期间。然后,我确实尝试使用ij之类的东西将2d索引数组d_i[ij[0].ravel(), ij[1].ravel()] = df[i::n_t,i::n_t].ravel()展平,这给了我相同的输出,但是又出现了另一个错误:

NotImplementedError: only one advanced index supported

所以我终于尝试通过使用经典的2嵌套for循环结构来回避这个问题:

tmp = df[i::n_t,i::n_t]
for k,r in enumerate(ddl_nl):
    for l,c in enumerate(ddl_nl):
        d_i[r,c] = tmp[k,l]

正在启用装饰器的情况下,并给出了预期的结果。

但是我不能停止思考我是否在这里缺少此numpy 2d阵列广播操作的任何与numba兼容的替代方案?任何帮助将不胜感激。

2 个答案:

答案 0 :(得分:1)

检查一些值:

In [446]: ddl_nl = np.array([0,1]) 
     ...: ij = np.asarray(np.meshgrid(ddl_nl,ddl_nl,indexing='ij')) 
     ...:                                                                                      
In [447]: ij                                                                                   
Out[447]: 
array([[[0, 0],
        [1, 1]],

       [[0, 1],
        [0, 1]]])
In [448]: n_t = 8 
     ...: q_ddl = 2 
     ...: n_ddl = 3                                                                            
In [449]: d_i = np.zeros((n_ddl,n_ddl))                                                        
In [450]: d_i                                                                                  
Out[450]: 
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])
In [451]: d_i[ij[0], ij[1]]                                                                    
Out[451]: 
array([[0., 0.],
       [0., 0.]])

尝试进一步诊断d_i

In [452]: d_i = np.arange(9).reshape(3,3)                                                      
In [453]: d_i[ij[0], ij[1]]                                                                    
Out[453]: 
array([[0, 1],
       [3, 4]])
In [454]: d_i[:2,:2]                                                                           
Out[454]: 
array([[0, 1],
       [3, 4]])

当基本切片可行时,为什么要使用高级索引?

我还没有尝试使用numba进行此操作,但是可能会有更好的工作机会。就是说,枚举循环可能同样快。我对numba的经验不足,不能肯定地说。

===

很明显,您执行了numpy不支持的numba操作:

In [456]: numba.__version__                                                                    
Out[456]: '0.43.0'
In [457]: @numba.jit 
     ...: def foo(arr): 
     ...:     return arr[[1,2,3],[1,2,3]] 
     ...:                                                                                      
In [458]: foo(np.eye(4))                                                                       
Out[458]: array([1., 1., 1.])
In [459]: @numba.njit 
     ...: def foo(arr): 
     ...:     return arr[[1,2,3],[1,2,3]] 
     ...:                                                                                      
In [460]: foo(np.eye(4))    
TypingError: Failed in nopython mode pipeline (step: nopython frontend)
Invalid use of Function(<built-in function getitem>) with argument(s) of type(s): (array(float64, 2d, C), tuple(list(int64) x 2))

这很正常。 numba并没有声称覆盖Pythonnumpy

但是使用numba,我们不必避免迭代。实际上,在替换numpy不能没有迭代的操作时,这是最好的。

In [465]: @numba.njit 
     ...: def foo(arr): 
     ...:     out = np.zeros((3,), arr.dtype) 
     ...:     for n, (i,j) in enumerate(zip([1,2,3],[1,2,3])): 
     ...:         out[n] = arr[i,j] 
     ...:     return out 

In [466]: foo(np.eye(4))                                                                       
Out[466]: array([1., 1., 1.])
In [467]: timeit foo(np.eye(4))                                                                
6.85 µs ± 28.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [468]: np.eye(4)[[1,2,3],[1,2,3]]                                                           
Out[468]: array([1., 1., 1.])
In [469]: timeit np.eye(4)[[1,2,3],[1,2,3]]                                                    
13.3 µs ± 31.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

答案 1 :(得分:1)

避免花哨索引

还避免使用全局变量(它们在编译时进行了硬编码),并使您的代码尽可能简单(简单意味着只有一个露水循环,如果/否则,...)。如果ddl_nl数组实际上仅使用np.arange构造,则甚至根本不需要此数组。

示例

import numpy as np
from numba import jit

@jit(nopython=True)
def foo_nb(df,n_ddl,n_t,ddl_nl):
    out = np.zeros((n_t,n_ddl,n_ddl))
    for i in range(0,n_t):
        for ii in range(ddl_nl.shape[0]):
            ind_1=ddl_nl[ii]
            for jj in range(ddl_nl.shape[0]):
                ind_2=ddl_nl[jj]
                out[i,ind_1,ind_2] = df[i+ii*n_t,i+jj*n_t]
    return out

时间

#Testing and compilation
A=foo(df,ij)
B=foo_nb(df,n_ddl,n_t,ddl_nl)
print(np.allclose(A,B))
#True
%timeit foo(df,ij)
#16.8 µs ± 107 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit foo_nb(df,n_ddl,n_t,ddl_nl)
#674 ns ± 2.56 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)