我正在尝试规范相似的样本数据
{
"2018-04-26 10:09:33": [
{
"user_id": "M8BE957ZA",
"ts": "2018-04-26 10:06:33",
"message": "Hello"
}
],
"2018-04-27 19:10:55": [
{
"user_id": "M5320QS1X",
"ts": "2018-04-27 19:10:55",
"message": "Thank you"
}
],
我知道我可以使用json_normalize(data,'2018-04-26 10:09:33',record_prefix= '')
在熊猫中创建表格,但是日期/时间一直在变化。我如何规范化它,所以我有以下内容?任何建议
user_id. ts message
2018-04-26 10:09:33 M8BE957ZA. 2018-04-26 10:06:33. Hello
2018-04-26 10:09:33 M5320QS1X 2018-04-27 19:10:55. Thank you
答案 0 :(得分:1)
test = {
"2018-04-26 10:09:33": [
{
"user_id": "M8BE957ZA",
"ts": "2018-04-26 10:06:33",
"message": "Hello"
}
],
"2018-04-27 19:10:55": [
{
"user_id": "M5320QS1X",
"ts": "2018-04-27 19:10:55",
"message": "Thank you"
}
]}
df = pd.DataFrame(test).melt()
variable value
0 2018-04-26 10:09:33 {'user_id': 'M8BE957ZA', 'ts': '2018-04-26 10:...
1 2018-04-27 19:10:55 {'user_id': 'M5320QS1X', 'ts': '2018-04-27 19:...
读入数据框作为字典,然后将其融化以获得上述结构。接下来,您可以在值列上使用json_normalize
,然后将其重新加入变量列,如下所示:
df.join(json_normalize(df['value'])).drop(columns = 'value').rename(columns = {'variable':'date'})
date user_id ts message
0 2018-04-26 10:09:33 M8BE957ZA 2018-04-26 10:06:33 Hello
1 2018-04-27 19:10:55 M5320QS1X 2018-04-27 19:10:55 Thank you