我有2个数据帧,如下所示:
df1 =
City Date Data1
LA 2020-01-01 20
LA 2020-01-02 30
NY 2020-01-01 50
df2 =
City Date Data2
LA 2020-01-01 2.5
LA 2020-01-02 1
LA 2020-01-03 7
NY 2020-01-01 6.5
我想基于“城市”和“日期”合并或合并这两个文件,这样结果将是:
City Date Data1 Data2
LA 2020-01-01 20 2.5
LA 2020-01-02 30 1
NY 2020-01-01 50 6.5
我尝试过的:
pd.concat([df1.set_index(['Country','Date'],[df1.set_index(['Country','Date'])], axis = 1)
我得到错误: ValueError:无法处理非唯一的多索引!
由于我将日期作为索引,因此我无法合并。
答案 0 :(得分:2)
通过GroupBy.cumcount
创建的新列对想法进行了重复数据删除:
print (df2)
City Date Data2
0 LA 2020-01-01 2.5
1 LA 2020-01-02 1.0 <- duplicates
2 LA 2020-01-02 7.0 <- duplicates
3 NY 2020-01-01 6.5
df1 = (df1.assign(g = df1.groupby(['City','Date']).cumcount())
.set_index(['City','Date','g']))
df2 = (df2.assign(g = df2.groupby(['City','Date']).cumcount())
.set_index(['City','Date','g']))
df = pd.concat([df1, df2], axis = 1)
print (df)
Data1 Data2
City Date g
LA 2020-01-01 0 20.0 2.5
2020-01-02 0 30.0 1.0
1 NaN 7.0
NY 2020-01-01 0 50.0 6.5
如果需要删除助手级别g
:
df = pd.concat([df1, df2], axis = 1).reset_index(level=2, drop=True)
print (df)
Data1 Data2
City Date
LA 2020-01-01 20.0 2.5
2020-01-02 30.0 1.0
2020-01-02 NaN 7.0
NY 2020-01-01 50.0 6.5
编辑:我认为这里有必要将两列都转换为DataFrame,然后将内部联接与DataFrame.merge
一起使用:
df1['Date'] = pd.to_datetime(df1['Date'])
df2['Date'] = pd.to_datetime(df2['Date'])
df = df1.merge(df2, on=['City','Date'])
print (df)
City Date Data1 Data2
0 LA 2020-01-01 20 2.5
1 LA 2020-01-02 30 1.0
2 NY 2020-01-01 50 6.5