我有一个csv文件,其中包含每个球队在整个赛季的比赛和统计数据。我想将客队与那周面对的主队排在同一排。
当前数据框:
Week Team H/a Opp Pf Pa Pyards
1 A C 3 14 100
1 B D 7 21 200
1 C @ A 14 3 300
1 D @ B 21 7 400
所需数据框:
Week HomeTeam H-score H-Pyards AwayTeam A-score A-Pyards
1 A 3 100 C 14 300
1 B 7 200 D 21 400
但是我会为每支球队和每多周提供更多统计数据。
答案 0 :(得分:1)
我相信您正在寻找的操作是testImplementation ('org.robolectric:robolectric:3.x.x') {
exclude group: 'com.google.protobuf'
}
,之后进行了一些操作。正如Quang Hoang所说,将相同的数据框/表合并到不同的列中称为自连接。我相信这是一种能够获得预期输出的方法:
self-join
输出:
df = pd.DataFrame({'Week':[1,1,1,1],
'Team':['A','B','C','D'],
'H/a':[np.nan,np.nan,'@','@'],
'Opp':['C','D','A','B'],
'Pf':[3,7,14,21],
'Pa':[14,21,3,7],
'Pyards':[100,200,300,400]})
print(df)
new_df = df.merge(df,how='inner',left_on=['Week','Team'],right_on=['Week','Opp'])
new_df = new_df[new_df['H/a_x'] != '@']
replacers = {'Team_x':'HomeTeam','Pf_x':'Pf','Pyards_x':'H-Pyards','Opp_x':'AwayTeam','Pa_x':'A-score','Pyards_y':'A-Pyards'}
new_df = new_df[['Week']+[x for x in replacers.keys()]]
new_df = new_df.rename(columns=replacers)
print(new_df)