重新采样时间序列数据

时间:2020-03-02 17:38:38

标签: python pandas

我有一些随机的每小时时间序列数据,(请弥补),如何为每日的最大值重新采样以及如何为记录的每日最大值的小时创建一个单独的df列?

import pandas as pd 
import numpy as np 
from numpy.random import randint
import os

np.random.seed(10)  # added for reproductibility                                                                                                                                                                 

rng = pd.date_range('10/9/2018 00:00', periods=1000, freq='1H') 
df = pd.DataFrame({'Random_Number':randint(1, 100, 1000)}, index=rng)

df.index.name = 'Date'

重新采样随机值:

daily_summary = pd.DataFrame()

daily_summary['Random_Number_Resamp'] = df['Random_Number'].resample('D').max()


daily_summary.head()

然后尝试记录每日最大值发生的小时...

daily_summary['Hour_Map'] = daily_summary.Random_Number_Resamp.index.strftime('%H').astype('int')

daily_summary

上面的代码不会引发属性错误,但是hour_map将为零。.创建daily_summary df时,在此步骤中还会出现hour_map,我该怎么做?

2 个答案:

答案 0 :(得分:1)

您可以做groupby

df.groupby(df.index.normalize())['Random_Number'].agg(['idxmax', 'max']) 

输出(头):

                         idxmax     max
Date        
2018-10-09  2018-10-09 05:00:00     94
2018-10-10  2018-10-10 20:00:00     95
2018-10-11  2018-10-11 15:00:00     97
2018-10-12  2018-10-12 18:00:00     98
2018-10-13  2018-10-13 22:00:00     91

答案 1 :(得分:0)

我想我明白你在寻找什么...

只需在原始df中创建一个小时列,然后重新采样:

np.random.seed(10)  # added for reproductibility                                                                                                                                                                 

rng = pd.date_range('10/9/2018 00:00', periods=1000, freq='1H') 
df = pd.DataFrame({'Random_Number':randint(1, 100, 1000)}, index=rng)

df.index.name = 'Date'

# create hour column
df['hour'] = df.index.hour

# resample df
daily_summary = df.resample('D').max()

            Random_Number  hour
Date                           
2018-10-09             94    23
2018-10-10             95    23
2018-10-11             97    23
2018-10-12             98    23
2018-10-13             91    23