我有以下系列文章:
const iterable = {
[Symbol.iterator]() {
return {
next() {
return {} // <~ doesn't have done property - will cause infinite iteration
}
}
}
}
console.log([...iterable])
和数据框:
>>>counts = pd.Series({'0.0':5, '1.0':6, '2.0':14, '3.0':98})
>>>counts
0.0 5
1.0 6
2.0 14
3.0 98
dtype: int64
我想合并系列中的数据框,使其系列的索引与数据框的>>>topic_keywords = [(0, 0.0, 'challenge, web, language, require, bot'),
(1, 3.0, 'time, huge, figure, image, run, develop'),
(2, 1.0, 'datum, user, access, speech, bandwidth'),
(3, 2.0, ' main, decide, audio, sensor, disabled, make'),
(4, 2.0, ' main, decide, audio, sensor, disabled, make'),
(5, 0.0, 'challenge, web, language, require, bot')]
>>> topicKeywordsDf = pd.DataFrame(topic_keywords, columns=['ID', 'Topic_Num', 'Topic_Keywords'])
>>> topicKeywordsDf = topicKeywordsDf.set_index('ID')
>>> topicKeywordsDf
Topic_Num Topic_Keywords
ID
0 0.0 challenge, web, language, require, bot
1 3.0 time, huge, figure, image, run, develop
2 1.0 datum, user, access, speech, bandwidth
3 2.0 main, decide, audio, sensor, disabled, make
4 2.0 main, decide, audio, sensor, disabled, make
5 0.0 challenge, web, language, require, bot
列匹配:
Topic_Num
最好,最终数据帧应基于Topic_Num Count Topic_Keywords
0.0 5 challenge, web, language, require, bot
1.0 14 datum, user, access, speech, bandwidth
2.0 6 main, decide, audio, sensor, disabled, make
3.0 98 time, huge, figure, image, run, develop
进行排序。如何合并这些?
尝试:
Topic_Num
但是出现此错误:
ValueError:您正在尝试合并object和float64列。如果 您希望继续,应该使用pd.concat
答案 0 :(得分:1)
您必须添加一些内容:
首先,您的counts_df没有列名,添加名称将为您提供一个具有列名的数据框
CapWord
您的合并现在有效。您应该删除不使用的列,并考虑是否要重复。如果您的counts_df已排序,那么合并将是这样。
counts_df=pd.DataFrame({'Topic_Num':counts.index, 'value':counts.values})