答案 0 :(得分:1)
您可以这样做:
from itertools import product
pdindex=product(df.groupby(["store_id", "period_id"]).groups, range(1,12))
pdindex=pd.MultiIndex.from_tuples(map(lambda x: (*x[0], x[1]), pdindex), names=["store_id", "period_id", "Item"])
df=df.set_index(["store_id", "period_id", "Item"])
res=pd.DataFrame(index=pdindex, columns=df.columns)
res.loc[df.index, df.columns]=df
res=res.fillna(0).reset_index()
现在,这仅在假设您没有Item
范围之外的任何[1,11]
时才有效。
答案 1 :(得分:1)
您可以这样做:
样本df :
df = pd.DataFrame({'store_id':[1160962,1160962,1160962,1160962,1160962,1160962,1160962,1160962,1160962,1160962, 1160962],
'period_id':[1025,1025,1025,1025,1025,1025,1026,1026,1026,1026,1026],
'item_x':[1,4,5,6,7,8,1,2,5,6,7],
'z':[1,4,5,6,7,8,1,2,5,6,7]})
解决方案:
num = range(1,12)
def f(x):
return x.reindex(num, fill_value=0)\
.assign(store_id=x['store_id'].mode()[0], period_id = x['period_id'].mode()[0])
df.set_index('item_x').groupby(['store_id','period_id'], group_keys=False).apply(f).reset_index()
答案 2 :(得分:0)
这是@GrzegorzSkibinski正确答案的简化形式。
此答案未修改原始DataFrame。它使用较少的变量来存储中间数据结构,并使用列表推导简化了map的使用。
我还使用reindex()
,而不是使用生成的索引创建新的DataFrame并将其填充原始数据。
import pandas as pd
import itertools
df.set_index(
["store_id", "period_id", "Item_x"]
).reindex(
pd.MultiIndex.from_tuples([
group + (item,)
for group, item in itertools.product(
df.groupby(["store_id", "period_id"]).groups,
range(1, 12),
)],
names=["store_id", "period_id", "Item_x"]
),
fill_value=0,
).reset_index()
在测试中,输出符合您的预期。