我正在尝试产生16个数据帧,每个数据帧具有16种不同蛋白质的名称,我尝试的代码不起作用
for (i in seq(1,len_TSPAN)){
temp_TSPAN <- TSPANS$V1[i]
print(temp_TSPAN)
paste(temp_TSPAN) <- data.frame(Lum_A_Q1_means = rep(NA, 67), Lum_A_Q2_means = rep(NA,67),
Lum_A_Q3_means = rep(NA, 67), Lum_A_Q4_means = rep(NA,67),
Lum_B_Q1_means = rep(NA, 67), Lum_B_Q2_means = rep(NA,67),
Lum_B_Q3_means = rep(NA, 67), Lum_B_Q4_means = rep(NA,67),
Her_2_Q1_means = rep(NA, 67), Her_2_Q2_means = rep(NA,67),
Her_2_Q3_means = rep(NA, 67), Her_2_Q4_means = rep(NA,67),
Basal_Q1_means = rep(NA, 67), Basal_Q2_means = rep(NA,67),
Basal_Q3_means = rep(NA, 67), Basal_Q4_means = rep(NA,67),
Normal_Q1_means = rep(NA, 67), Normal_Q2_means = rep(NA,67),
Normal_Q3_means = rep(NA, 67), Normal_Q4_means = rep(NA,67))
}
答案 0 :(得分:1)
paste
上的 <-
替换为assign
for (i in seq(1,len_TSPAN)){
temp_TSPAN <- TSPANS$V1[i]
print(temp_TSPAN)
assign(as.character(temp_TSPAN), value = data.frame(Lum_A_Q1_means = rep(NA, 67), Lum_A_Q2_means = rep(NA,67),
Lum_A_Q3_means = rep(NA, 67), Lum_A_Q4_means = rep(NA,67),
Lum_B_Q1_means = rep(NA, 67), Lum_B_Q2_means = rep(NA,67),
Lum_B_Q3_means = rep(NA, 67), Lum_B_Q4_means = rep(NA,67),
Her_2_Q1_means = rep(NA, 67), Her_2_Q2_means = rep(NA,67),
Her_2_Q3_means = rep(NA, 67), Her_2_Q4_means = rep(NA,67),
Basal_Q1_means = rep(NA, 67), Basal_Q2_means = rep(NA,67),
Basal_Q3_means = rep(NA, 67), Basal_Q4_means = rep(NA,67),
Normal_Q1_means = rep(NA, 67), Normal_Q2_means = rep(NA,67),
Normal_Q3_means = rep(NA, 67), Normal_Q4_means = rep(NA,67))
)
}
似乎我们在每个循环中都创建了相同的“ data.frame”对象。使用replicate
并存储在list
lst1 <- replicate(len_TSPAN),
data.frame(Lum_A_Q1_means = rep(NA, 67), Lum_A_Q2_means = rep(NA,67),
Lum_A_Q3_means = rep(NA, 67), Lum_A_Q4_means = rep(NA,67),
Lum_B_Q1_means = rep(NA, 67), Lum_B_Q2_means = rep(NA,67),
Lum_B_Q3_means = rep(NA, 67), Lum_B_Q4_means = rep(NA,67),
Her_2_Q1_means = rep(NA, 67), Her_2_Q2_means = rep(NA,67),
Her_2_Q3_means = rep(NA, 67), Her_2_Q4_means = rep(NA,67),
Basal_Q1_means = rep(NA, 67), Basal_Q2_means = rep(NA,67),
Basal_Q3_means = rep(NA, 67), Basal_Q4_means = rep(NA,67),
Normal_Q1_means = rep(NA, 67), Normal_Q2_means = rep(NA,67),
Normal_Q3_means = rep(NA, 67), Normal_Q4_means = rep(NA,67)), simplify = FALSE)
答案 1 :(得分:0)
这是另一个解决方案,可以从循环中解决。请注意,我已经制作了一个dataframe
用于说明
TSPANS <- data.frame(V1 = letters[1:12])
myList <- list()
for (i in seq(1,12)){
temp_TSPAN <- TSPANS$V1[i]
print(temp_TSPAN)
x <- data.frame(Lum_A_Q1_means = rep(NA, 67), Lum_A_Q2_means = rep(NA,67),
Lum_A_Q3_means = rep(NA, 67), Lum_A_Q4_means = rep(NA,67),
Lum_B_Q1_means = rep(NA, 67), Lum_B_Q2_means = rep(NA,67),
Lum_B_Q3_means = rep(NA, 67), Lum_B_Q4_means = rep(NA,67),
Her_2_Q1_means = rep(NA, 67), Her_2_Q2_means = rep(NA,67),
Her_2_Q3_means = rep(NA, 67), Her_2_Q4_means = rep(NA,67),
Basal_Q1_means = rep(NA, 67), Basal_Q2_means = rep(NA,67),
Basal_Q3_means = rep(NA, 67), Basal_Q4_means = rep(NA,67),
Normal_Q1_means = rep(NA, 67), Normal_Q2_means = rep(NA,67),
Normal_Q3_means = rep(NA, 67), Normal_Q4_means = rep(NA,67), temp_TSPAN = temp_TSPAN)
myList[[temp_TSPAN]] <- x
}
# I have added a column named, temp_TSPAN, with name of temp_TSPAN in it. This is because converting the list to a dataframe, as below, will put everything into one.
library(tidyverse)
# You may use this dataframe to subset for your temp_TSPAN variable. Its better to have them in one, them lots of separate dataframes.
df <- bind_rows(myList)