我想抓取不同鞋类公司的数据。我正在尝试从Yahoo-finance刮掉EPS,但是我找不到任何方法。到目前为止,我唯一看到的方法就是查找库存数据,如打开,关闭等。如何从yahoo-fiance抓取不是库存数据的数据。
答案 0 :(得分:0)
这将获取您想要的指标并将所有内容写入CSV文件。
import csv
import requests
from bs4 import BeautifulSoup
url_base = "https://finviz.com/quote.ashx?t="
tckr = ['SBUX','MSFT','AAPL']
url_list = [url_base + s for s in tckr]
with open('C:/your_path_here/metrics.csv', 'a', newline='') as f:
writer = csv.writer(f)
for url in url_list:
try:
fpage = requests.get(url)
fsoup = BeautifulSoup(fpage.content, 'html.parser')
# write header row
writer.writerow(map(lambda e : e.text, fsoup.find_all('td', {'class':'snapshot-td2-cp'})))
# write body row
writer.writerow(map(lambda e : e.text, fsoup.find_all('td', {'class':'snapshot-td2'})))
except HTTPError:
print("{} - not found".format(url))
答案 1 :(得分:0)
这是您的另一种方法。注意:通过更改URL,您可以删除要下载的其他指标。
import requests
from bs4 import BeautifulSoup
base_url = 'http://finviz.com/screener.ashx?v=152&s=ta_topgainers&o=price&c=0,1,2,3,4,5,6,7,25,63,64,65,66,67'
html = requests.get(base_url)
soup = BeautifulSoup(html.content, "html.parser")
main_div = soup.find('div', attrs = {'id':'screener-content'})
light_rows = main_div.find_all('tr', class_="table-light-row-cp")
dark_rows = main_div.find_all('tr', class_="table-dark-row-cp")
data = []
for rows_set in (light_rows, dark_rows):
for row in rows_set:
row_data = []
for cell in row.find_all('td'):
val = cell.a.get_text()
row_data.append(val)
data.append(row_data)
# sort rows to maintain original order
data.sort(key=lambda x: int(x[0]))
import pandas
pandas.DataFrame(data).to_csv("C:/Users/ryans/OneDrive/Desktop/today.csv", header=False)