对于给定的熊猫数据框df
,我想将每个样本(行)彼此进行比较。
对于更大的数据集,这将导致过多的比较(n**2
)。因此,有必要仅对较小的组(即,对所有共享相同id
的组)进行比较,并且要尽可能地高效。
我想构造一个数据帧(df_pairs
),该数据帧的每一行都包含一对。另外,我想获取所有对索引(最好是Python集合)。
首先,我构建一个示例数据框:
import numpy as np
import pandas as pd
from functools import reduce
from itertools import product, combinations
n_samples = 10_000
suffixes = ["_1", "_2"] # for df_pairs
id_str = "id"
df = pd.DataFrame({id_str: np.random.randint(0, 10, n_samples),
"A": np.random.randint(0, 100, n_samples),
"B": np.random.randint(0, 100, n_samples),
"C": np.random.randint(0, 100, n_samples)}, index=range(0, n_samples))
columns_df_pairs = ([elem + suffixes[0] for elem in df.columns] +
[elem + suffixes[1] for elem in df.columns])
在下面,我将比较4个不同的选项和相应的性能指标:
选项1
groups = df.groupby(id_str).groups # get the groups
pairs_per_group = [set(product(elem.tolist(), repeat=2)) for _, elem in groups.items()] # determine pairs per group
set_of_pairs = reduce(set.union, pairs_per_group) # convert all groups into one set
idcs1, idcs2 = zip(*[(e1, e2) for e1, e2 in set_of_pairs])
df_pairs = pd.DataFrame(np.hstack([df.values[idcs1, :], df.values[idcs2, :]]), # construct the dataframe of pairs
columns=columns_df_pairs,
index=pd.MultiIndex.from_tuples(set_of_pairs, names=('index 1', 'index 2')))
df_pairs.drop([id_str + suffixes[0], id_str + suffixes[1]], inplace=True, axis=1)
选项1耗时34.2 s±1.28 s。
选项2
groups = df.groupby(id_str).groups # get the groups
pairs_per_group = [np.array(np.meshgrid(elem.values, elem.values)).T.reshape(-1, 2) for _, elem in groups.items()]
idcs = np.unique(np.vstack(pairs_per_group), axis=0)
df_pairs2 = pd.DataFrame(np.hstack([df.values[idcs[:, 0], :], df.values[idcs[:, 1], :]]), # construct the dataframe of pairs
columns=columns_df_pairs,
index=pd.MultiIndex.from_arrays([idcs[:, 0], idcs[:, 1]], names=('index 1', 'index 2')))
df_pairs2.drop([id_str + suffixes[0], id_str + suffixes[1]], inplace=True, axis=1)
选项2耗时13 s±1.34 s。
选项3
groups = df.groupby(id_str).groups # get the groups
pairs_per_group = [np.array([np.tile(elem.values, len(elem.values)), np.repeat(elem.values, len(elem.values))]).T.reshape(-1, 2) for _, elem in groups.items()]
idcs = np.unique(np.vstack(pairs_per_group), axis=0)
df_pairs3 = pd.DataFrame(np.hstack([df.values[idcs[:, 0], :], df.values[idcs[:, 1], :]]), # construct the dataframe of pairs
columns=columns_df_pairs,
index=pd.MultiIndex.from_arrays([idcs[:, 0], idcs[:, 1]], names=('index 1', 'index 2')))
df_pairs3.drop([id_str + suffixes[0], id_str + suffixes[1]], inplace=True, axis=1)
选项3耗时12.1秒±347毫秒。
选项4
df_pairs4 = pd.merge(left=df, right=df, how="inner", on=id_str, suffixes=suffixes)
# here, I do not know how to get the MultiIndex in
df_pairs4.drop([id_str], inplace=True, axis=1)
最快以1.41 s±239 ms计算选项4。但是,在这种情况下,我没有成对的索引。
通过使用comparisons
而非itertools的product
,我可以稍微提高性能。我还可以构建比较矩阵,仅使用上三角形,然后从那里构建数据框。但是,这似乎并不比执行笛卡尔积和删除自引用以及反向比较(a, b) = (b, a)
更有效。
merge
或另一个pandas
函数来用多索引构造所需的数据框吗?答案 0 :(得分:1)
内部merge
将破坏索引,而使用新的Int64Index。如果索引很重要,请reset_index
将其作为一列,然后将这些列设置回索引。
df_pairs4 = (pd.merge(left=df.reset_index(), right=df.reset_index(),
how="inner", on=id_str, suffixes=suffixes)
.set_index(['index_1', 'index_2']))
id A_1 B_1 C_1 A_2 B_2 C_2
index_1 index_2
0 0 4 92 79 10 92 79 10
13 4 92 79 10 83 68 69
24 4 92 79 10 67 73 90
25 4 92 79 10 22 31 35
36 4 92 79 10 64 44 20
... .. ... ... ... ... ... ...
9993 9971 7 20 65 92 47 65 21
9977 7 20 65 92 50 35 27
9980 7 20 65 92 43 36 62
9992 7 20 65 92 99 2 17
9993 7 20 65 92 20 65 92