from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
def build_classifier():
classifier = Sequential()
classifier.add(Dense(units = 6, activation = 'relu', input_dim = 11, kernel_initializer =
'uniform'))
classifier.add(Dense(units = 6, activation = 'relu', kernel_initializer = 'uniform'))
classifier.add(Dense(units = 1, activation = 'sigmoid', kernel_initializer = 'uniform'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
return classifier
classifier = KerasClassifier(build_fn = build_classifier, batch_size = 10, epochs = 100)
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10, n_jobs = -1)
/ 这段代码看起来很干净,但是K_cross验证似乎不起作用。与使用所有CPU相比,它返回Nan并执行得非常快 /
答案 0 :(得分:0)
您定义的分类器功能可能存在错误,这将为您提供错误的输出。我的猜测是检查您是否已在输入层中适当定义了输入节点的数量,因为其余的代码似乎都是正确的。