我有这个数据框:
a = [1, 2, 3, 4, 5]
b = ['2019-08-01', '2019-09-01', '2019-10-23', '2019-11-12', '2019-11-30']
c = [12, 0, 0, 0, 0]
d = [0, 23, 0, 0, 0]
e = [12, 24, 35, 0, 0]
f = [0, 0, 44, 56, 82]
g = [21, 22, 17, 75, 63]
df = pd.DataFrame({'ID': a, 'Date': b, 'Unit_sold_8': c,
'Unit_sold_9': d, 'Unit_sold_10': e, 'Unit_sold_11': f,
'Unit_sold_12': g})
df['Date'] = pd.to_datetime(df['Date'])
我想基于日期计算每个ID的平均销售额。例如,如果ID的开放日期为9月,那么该ID的平均销售日期将为9月。我尝试了np.select
,但我意识到这种方法会使我的代码超长。
col = df.columns
mask1 = (df['Date'] >= "08/01/2019") & (df['Date'] < "09/01/2019")
mask2 = (df['Date'] >= "09/01/2019") & (df['Date'] < "10/01/2019")
mask3 = (df['Date'] >= "10/01/2019") & (df['Date'] < "11/01/2019")
mask4 = (df['Date'] >= "11/01/2019") & (df['Date'] < "12/01/2019")
mask5 = (df['Date'] >= "12/01/2019")
condition2 = [mask1, mask2, mask3, mask4, mask5]
result2 = [df[col[2:]].mean(skipna = True, axis = 1),
df[col[3:]].mean(skipna = True, axis = 1),
df[col[4:]].mean(skipna = True, axis = 1),
df[col[5:]].mean(skipna = True, axis = 1),
df[col[6:]].mean(skipna = True, axis = 1)]
df.loc[:, 'Mean'] = np.select(condition2, result2, default = np.nan)
有没有更快的方法来解决这个问题?尤其是当时间范围扩大时(12个月,24个月等)
答案 0 :(得分:1)
对您有帮助吗?
from datetime import datetime
import numpy as np
from dateutil import relativedelta
check_date = datetime.today()
df['n_months'] = df['Date'].apply(lambda x: relativedelta.relativedelta( check_date,x).months)
df['total'] = df.iloc[:,range(2,df.shape[1]-1)].sum(axis=1)
df['avg'] = df['total'] / df['n_months']
print(df)
ID Date Unit_sold_8 ... n_months total avg
0 1 2019-08-01 12 ... 5 45 9.00
1 2 2019-09-01 0 ... 4 69 17.25
2 3 2019-10-23 0 ... 3 96 32.00
3 4 2019-11-12 0 ... 2 131 65.50
4 5 2019-11-30 0 ... 2 145 72.50
答案 1 :(得分:1)
M= df
#melt data to pull units as variables
.melt(id_vars=['ID','Date'])
#create temp variables to pull out Month from Date and Units
.assign(Mth=lambda x: x['Date'].dt.month,
oda_detail = lambda x: x.variable.str.split('_').str[-1])
.sort_values(['ID','Mth'])
#keep only rows where the Mth is less than or equal to other detail
.loc[lambda x : x['Mth'].astype(int).le(x['oda_detail'].astype(int))]
#groupby and get the mean
.groupby(['ID','Date'])['value'].mean()
.reset_index()
.drop(['ID','Date'],axis=1)
.rename({'value':'Mean'},axis=1)
重新加入原始数据框:
pd.concat([df,M],axis=1)
ID Date Unit_sold_8 Unit_sold_9 Unit_sold_10 Unit_sold_11
Unit_sold_12 Mean
0 1 2019-08-01 12 0 12 0 21 9.00
1 2 2019-09-01 0 23 24 0 22 17.25
2 3 2019-10-23 0 0 35 44 17 32.00
3 4 2019-11-12 0 0 0 56 75 65.50
4 5 2019-11-30 0 0 0 82 63 72.50