cm = np.array(confusion_matrix(y_test, pred, labels=[0,1]))
b=str(df["topic"].factorize()[1][0])
print(b)
print(df["topic"].factorize()[1].categories.to_numpy)
np=df["topic"].factorize()[1].categories.to_numpy
from IPython.display import display
#print( df["topic"].factorize().CategoricalIndex)
#df["topic"].factorize()
for predicted in df["topic"].factorize()[1].categories:
for actual in df["topic"].factorize()[1].categories:
if predicted != actual and int(conf_mat[actual, predicted]) >= 10:
display(df.loc[indices_test[(y_test == actual) & (pred == predicted)]][['topic', 'body_wakati']])
print('')
我想使用混淆矩阵来检查分类中哪一个是错误的 我想遍历熊猫的分类索引,但不确定是不是数组?
这是我打印时的分类索引
print(df["topic"].factorize()[1])
CategoricalIndex(['computer_graphics', 'operating_systems',
'computer_security', 'application_service',
'computer_software', 'artificial_intelligence',
'search_engine', 'information_society'],
categories=['application_service', 'artificial_intelligence', 'computer_graphics', 'computer_security', 'computer_software', 'information_society', 'operating_systems', 'search_engine'], ordered=False, dtype='category')
---------------------------------------------------------------------------
并尝试进行迭代时出现错误
--> 385 if predicted != actual and int(conf_mat[actual, predicted]) >= 10:
386
387 display(df.loc[indices_test[(y_test == actual) & (pred == predicted)]][['topic', 'body_wakati']])
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices