我的目标是针对多个时间序列运行ARIMA,并将结果存储在数据框中。这是我的示例:
library(forecast)
my_df <- data.frame(gr = c(rep("a", 10), rep("b", 10)),
val = sample(1:100, 20))
get_arima <- function(sample_name = NA,df = NA){
fit = auto.arima(df[df$gr == sample_name, ]$val)
return(fit)
}
result <- sapply(c("a", "b"), get_arima, df = my_df, simplify = F)
result_df <- data.frame(gr = names(result),
model_result = unlist(result, use.names = F))
它会产生以下错误:
Error in as.data.frame.default(x[[i]], optional = TRUE, stringsAsFactors = stringsAsFactors) :
cannot coerce class ‘c("forecast_ARIMA", "ARIMA", "Arima")’ to a data.frame
目标是在第二栏中提供ARIMA模型,以便我执行类似forecast(result_df$model_result, h=3)
我猜想可能有多种方法,但是我希望用apply
回答,并将结果从列表中放入数据框。
答案 0 :(得分:1)
模型输出为list
str(result[[1]])
#List of 18
# $ coef : Named num 54.3
# ..- attr(*, "names")= chr "intercept"
# $ sigma2 : num 1454
# $ var.coef : num [1, 1] 131
# ...
,“结果”也是list
。如果我们将模型保留为“ data.frame”中的列,则将其保留为list
df1 <- data.frame(gr = names(result), model_result = I(result))
使用tibble
,我们可以直接创建一个list
列,而无需任何I
library(tibble)
df1 <- tibble(gr = names(result), model_result = result)
df1
# A tibble: 2 x 2
# gr model_result
# <chr> <named list>
#1 a <ARIMA>
#2 b <ARIMA>
用[[
df1$model_result[[1]]
#Series: df[df$gr == sample_name, ]$val
#ARIMA(0,0,0) with non-zero mean
#Coefficients:
# mean
# 54.3000
#s.e. 11.4378
#sigma^2 estimated as 1454: log likelihood=-50.07
#AIC=104.14 AICc=105.86 BIC=104.75
并应用forecast
forecast::forecast( df1$model_result[[1]], h = 3)
#Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
#11 54.3 5.439989 103.16 -20.42494 129.0249
#12 54.3 5.439989 103.16 -20.42494 129.0249
#13 54.3 5.439989 103.16 -20.42494 129.0249
如果我们要获取所有元素的forecast
,请使用map
library(purrr)
map(df1$model_result, ~ forecast::forecast(.x, h = 3))