因此,我正在做一个项目,基本上我必须预测房价是高于还是低于其中位数,为此,我使用的是Kaggle(https://drive.google.com/file/d/1GfvKA0qznNVknghV4botnNxyH-KvODOC/view)中的数据集。 1表示“中位数以上”,0表示“中位数以下”。我编写了这段代码来训练神经网络,并将其另存为.h5文件:
import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
import h5py
df = pd.read_csv('housepricedata.csv')
dataset = df.values
X = dataset[:,0:10]
Y = dataset[:,10]
min_max_scaler = preprocessing.MinMaxScaler()
X_scale = min_max_scaler.fit_transform(X)
X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, Y, test_size=0.3)
X_val, X_test, Y_val, Y_test = train_test_split(X_val_and_test, Y_val_and_test, test_size=0.5)
model = Sequential([
Dense(32, activation='relu', input_shape=(10,)),
Dense(32, activation='relu'),
Dense(1, activation='sigmoid'),
])
model.compile(optimizer='sgd',
loss='binary_crossentropy',
metrics=['accuracy'])
hist = model.fit(X_train, Y_train,
batch_size=32, epochs=100,
validation_data=(X_val, Y_val))
model.save("house_price.h5")
运行后,它成功将.h5文件保存到我的目录中。我现在想做的就是使用训练有素的模型对新的.csv文件进行预测,并确定每个预测值均高于或低于中位数。这是VSCode中的csv文件的图像,我希望它对以下内容进行预测: csv file image如您所见,此文件不包含1(中位数以上)或0(中位数以下),因为这是我希望它预测的。这是我编写的代码:
import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras.models import load_model
import h5py
df = pd.read_csv('data.csv')
dataset = df.values
X = dataset[:,0:10]
Y = dataset[:,10]
min_max_scaler = preprocessing.MinMaxScaler()
X_scale = min_max_scaler.fit_transform(X)
X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, Y, test_size=0.3)
X_val, X_test, Y_val, Y_test = train_test_split(X_val_and_test, Y_val_and_test, test_size=0.5)
model = load_model("house_price.h5")
y_pred = model.predict(X_test)
print(y_pred)
其输出为[[0.00101464]]
,我不知道这是什么,即使csv文件有4行,为什么它只返回一个值。有谁知道我可以解决这个问题,并能够为csv文件中的每一行预测1或0?
谢谢!
答案 0 :(得分:0)
据我了解,您想要什么! 我们试试吧 !这段代码对我有用
import tensorflow
model = tensorflow.keras.models.load_model("house_price.h5")
y_pred=model.predict(X_test)
您仍然无法访问以下站点 1:answer1 2:{answer2
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('C:\\Users\\acer\\Downloads\\housepricedata.csv')
dataset.head()
X=dataset.iloc[:,0:10]
y=dataset.iloc[:,10]
X.head()
from sklearn.preprocessing import StandardScaler
obj=StandardScaler()
X=obj.fit_transform(X)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split
(X,y,random_state=2020,test_size=0.25)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation =
'relu', input_dim = 10))
# classifier.add(Dropout(p = 0.1))
# Adding the second hidden layer
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation
= 'relu'))
# classifier.add(Dropout(p = 0.1))
# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation
= 'sigmoid'))
# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics
= ['accuracy'])
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
print(y_pred)
classifier.save("house_price.h5")
import tensorflow
model = tensorflow.keras.models.load_model("house_price.h5")
y_pred=model.predict(X_test)
y_pred = (y_pred > 0.5)
print(y_pred)
y_pred都为我产生相同的输出
在这里,您不是y_pred不包含0和1,因为您使用了S型函数来确定概率谓词 因此,如果(y_pred> 0.5)的平均值是1
#True rep one
#false rep zero
#you can use replace function or map function of pandas to get convert true
into 1