使用训练有素的Keras模型对新的CSV数据进行预测

时间:2020-01-18 05:32:52

标签: python tensorflow machine-learning keras neural-network

因此,我正在做一个项目,基本上我必须预测房价是高于还是低于其中位数,为此,我使用的是Kaggle(https://drive.google.com/file/d/1GfvKA0qznNVknghV4botnNxyH-KvODOC/view)中的数据集。 1表示“中位数以上”,0表示“中位数以下”。我编写了这段代码来训练神经网络,并将其另存为.h5文件:

import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
import h5py

df = pd.read_csv('housepricedata.csv')
dataset = df.values

X = dataset[:,0:10]
Y = dataset[:,10]

min_max_scaler = preprocessing.MinMaxScaler()

X_scale = min_max_scaler.fit_transform(X)

X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, Y, test_size=0.3)
X_val, X_test, Y_val, Y_test = train_test_split(X_val_and_test, Y_val_and_test, test_size=0.5)

model = Sequential([
    Dense(32, activation='relu', input_shape=(10,)),
    Dense(32, activation='relu'),
    Dense(1, activation='sigmoid'),
])

model.compile(optimizer='sgd',
              loss='binary_crossentropy',
              metrics=['accuracy'])

hist = model.fit(X_train, Y_train,
          batch_size=32, epochs=100,
          validation_data=(X_val, Y_val))

model.save("house_price.h5")

运行后,它成功将.h5文件保存到我的目录中。我现在想做的就是使用训练有素的模型对新的.csv文件进行预测,并确定每个预测值均高于或低于中位数。这是VSCode中的csv文件的图像,我希望它对以下内容进行预测: csv file image如您所见,此文件不包含1(中位数以上)或0(中位数以下),因为这是我希望它预测的。这是我编写的代码:

import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers import Dense
from keras.models import load_model
import h5py

df = pd.read_csv('data.csv')
dataset = df.values

X = dataset[:,0:10]
Y = dataset[:,10]

min_max_scaler = preprocessing.MinMaxScaler()

X_scale = min_max_scaler.fit_transform(X)

X_train, X_val_and_test, Y_train, Y_val_and_test = train_test_split(X_scale, Y, test_size=0.3)
X_val, X_test, Y_val, Y_test = train_test_split(X_val_and_test, Y_val_and_test, test_size=0.5)

model = load_model("house_price.h5")

y_pred = model.predict(X_test)

print(y_pred)

其输出为[[0.00101464]],我不知道这是什么,即使csv文件有4行,为什么它只返回一个值。有谁知道我可以解决这个问题,并能够为csv文件中的每一行预测1或0? 谢谢!

1 个答案:

答案 0 :(得分:0)

据我了解,您想要什么! 我们试试吧 !这段代码对我有用

 import tensorflow
 model = tensorflow.keras.models.load_model("house_price.h5")
 y_pred=model.predict(X_test)

您仍然无法访问以下站点 1:answer1 2:{answer2

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('C:\\Users\\acer\\Downloads\\housepricedata.csv')
dataset.head()

X=dataset.iloc[:,0:10]
y=dataset.iloc[:,10]

X.head()
from sklearn.preprocessing import StandardScaler
obj=StandardScaler()
X=obj.fit_transform(X)

from sklearn.model_selection import train_test_split
 X_train,X_test,y_train,y_test=train_test_split
                                        (X,y,random_state=2020,test_size=0.25)

  print(X_train.shape)
  print(X_test.shape)
  print(y_train.shape)
  print(y_test.shape)

  import keras
  from keras.models import Sequential
  from keras.layers import Dense
  from keras.layers import Dropout
  classifier = Sequential()

    # Adding the input layer and the first hidden layer
  classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 
                                                      'relu', input_dim = 10))
   # classifier.add(Dropout(p = 0.1))

   # Adding the second hidden layer
   classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation 
                                                                   = 'relu'))
   # classifier.add(Dropout(p = 0.1))

   # Adding the output layer
   classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation 
                                                               = 'sigmoid'))

       # Compiling the ANN
  classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics 
                                                          = ['accuracy'])

  classifier.fit(X_train, y_train, batch_size = 10, epochs = 100)
  y_pred = classifier.predict(X_test)
  y_pred = (y_pred > 0.5)
  print(y_pred)

  classifier.save("house_price.h5")

  import tensorflow
  model = tensorflow.keras.models.load_model("house_price.h5")
  y_pred=model.predict(X_test)
  y_pred = (y_pred > 0.5)
  print(y_pred)

y_pred都为我产生相同的输出

在这里,您不是y_pred不包含0和1,因为您使用了S型函数来确定概率谓词 因此,如果(y_pred> 0.5)的平均值是1

  #True rep one

  #false rep zero

  #you can use replace function or map function of pandas  to get convert true 
 into 1