如何解决错误AttributeError:'NoneType'对象没有属性'_inbound_nodes'?

时间:2020-01-14 04:57:28

标签: python tensorflow keras

当我尝试执行以下代码时,出现以下问题。怎么解决呢?基本上,RA_unit_3是一个预处理函数,具有与输入相同的形状。但是错误普遍存在。

UNet_02V2_CR_RAU.py:403: UserWarning: Update your `Model` call to the Keras 2 API: `Model(inputs=Tensor("in..., outputs=Tensor("co...)`
  model = Model(input = inputs, output = conv10)
Traceback (most recent call last):
  File "UNet_02V2_CR_RAU.py", line 433, in <module>
    model=unet(input_size = (1,image_height,image_width,3))
  File "UNet_02V2_CR_RAU.py", line 403, in unet
    model = Model(input = inputs, output = conv10)
  File "/home/harin/anaconda3/envs/tfgpuenv/lib/python3.7/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
    return func(*args, **kwargs)
  File "/home/harin/anaconda3/envs/tfgpuenv/lib/python3.7/site-packages/keras/engine/network.py", line 93, in __init__
    self._init_graph_network(*args, **kwargs)
  File "/home/harin/anaconda3/envs/tfgpuenv/lib/python3.7/site-packages/keras/engine/network.py", line 231, in _init_graph_network
    self.inputs, self.outputs)
  File "/home/harin/anaconda3/envs/tfgpuenv/lib/python3.7/site-packages/keras/engine/network.py", line 1366, in _map_graph_network
    tensor_index=tensor_index)
  File "/home/harin/anaconda3/envs/tfgpuenv/lib/python3.7/site-packages/keras/engine/network.py", line 1353, in build_map
    node_index, tensor_index)
  File "/home/harin/anaconda3/envs/tfgpuenv/lib/python3.7/site-packages/keras/engine/network.py", line 1353, in build_map
    node_index, tensor_index)
  File "/home/harin/anaconda3/envs/tfgpuenv/lib/python3.7/site-packages/keras/engine/network.py", line 1353, in build_map
    node_index, tensor_index)
  [Previous line repeated 10 more times]
  File "/home/harin/anaconda3/envs/tfgpuenv/lib/python3.7/site-packages/keras/engine/network.py", line 1325, in build_map
    node = layer._inbound_nodes[node_index]
AttributeError: 'NoneType' object has no attribute '_inbound_nodes'

我的主要方法如下:

def unet(pretrained_weights = None,input_size = None):
    inputs = Input(batch_shape=input_size)

    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    pool1 = RA_unit_3(x=pool1,h=pool1.shape[1].value, w=pool1.shape[2].value,n=16)

    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    # pool2 = RA_unit_3(x=pool2,h=pool2.shape[1].value, w=pool2.shape[2].value,n=16)

    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    # pool3 = RA_unit_3(x=pool3,h=pool3.shape[1].value, w=pool3.shape[2].value,n=16)

    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
    drop4 = Dropout(0.5)(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

    # pool4 = RA_unit_3(x=pool4,h=pool4.shape[1].value, w=pool4.shape[2].value,n=16)

    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
    drop5 = Dropout(0.5)(conv5)

    up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
    merge6 = concatenate([drop4,up6], axis = 3)

    # merge6 = RA_unit(x=merge6,n=16)

    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)

    up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
    merge7 = concatenate([conv3,up7], axis = 3)

    # merge7 = RA_unit(x=merge7,n=16)

    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)

    up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
    merge8 = concatenate([conv2,up8], axis = 3)

    # merge8 = RA_unit(x=merge8,n=16)

    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)

    up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
    merge9 = concatenate([conv1,up9], axis = 3)

    # merge9 = RA_unit(x=merge9,n=16)

    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)

    conv10 = Conv2D(3, 1, activation = 'sigmoid')(conv9)

    model = Model(input = inputs, output = conv10)

    model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy']) # original 1e-4 | 2e-4 = 0.00020

    model.summary()

    if(pretrained_weights):
        model.load_weights(pretrained_weights)

    return model

RA_unit_3方法:

def RA_unit_3(x, h, w, n):
    x_1 = tf.nn.avg_pool2d(x, ksize=[1, h/n, 2, 1], strides=[1, h/n, 2, 1], padding="SAME")
    x_t = tf.zeros([1, h, w, 0], tf.float32)
    for k in range(n):
        x_t_1 = tf.slice(x_1, [0,k,0,0], [1,1,int(w/2),x.shape[3].value])
        x_t_2 = tf.image.resize(x_t_1, [h,w], 1)
        x_t_3 = tf.abs(x - x_t_2)
        x_t = tf.concat([x_t, x_t_3], axis=3)
    x_out = tf.concat([x, x_t], axis=3)

    conv = Conv2D(x.shape[3], 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(x_out)
    conv = MaxPooling2D(pool_size=(1, 1))(conv)

    return conv

下一行的输入和输出是相同的。

pool1 = RA_unit_3(x=pool1,h=pool1.shape[1].value, w=pool1.shape[2].value,n=16)

0 个答案:

没有答案