所以我有两个要加入的数据框。渔获物是第二个表中存储有逗号分隔的值,其中一个与表A中的列匹配。我如何在Pyspark中使用它。下面是一个示例
表A具有
+-------+--------------------+
|deal_id| deal_name|
+-------+--------------------+
| 613760|ABCDEFGHI |
| 613740|TEST123 |
| 598946|OMG |
表B有
+-------+---------------------------+--------------------+
| deal_id| deal_type|
+-------+---------------------------+--------------------+
| 613760,613761,613762,613763 |Direct De |
| 613740,613750,613770,613780,613790|Direct |
| 598946 |In |
预期结果-当表A的交易ID与表B的逗号分隔值匹配时,将表A和表B连接起来。例如TableA.dealid-613760在表B的第一行中,我希望返回该行。
+-------+--------------------+---------------+
|deal_id| deal_name| deal_type|
+-------+--------------------+---------------+
| 613760|ABCDEFGHI |Direct De |
| 613740|TEST123 |Direct |
| 598946|OMG |In |
感谢您的协助。我在pyspark中需要它。
谢谢。
答案 0 :(得分:1)
样本数据
from pyspark.sql.types import IntegerType, LongType, StringType, StructField, StructType
tuples_a = [('613760', 'ABCDEFGHI'),
('613740', 'TEST123'),
('598946', 'OMG'),
]
schema_a = StructType([
StructField('deal_id', StringType(), nullable=False),
StructField('deal_name', StringType(), nullable=False)
])
tuples_b = [('613760,613761,613762,613763 ', 'Direct De'),
('613740,613750,613770,613780,613790', 'Direct'),
('598946', 'In'),
]
schema_b = StructType([
StructField('deal_id', StringType(), nullable=False),
StructField('deal_type', StringType(), nullable=False)
])
df_a = spark_session.createDataFrame(data=tuples_a, schema=schema_a)
df_b = spark_session.createDataFrame(data=tuples_b, schema=schema_b)
您需要拆分并分解列才能加入。
from pyspark.sql.functions import split, col, explode
df_b = df_b.withColumn('split', split(col('deal_id'), ','))\
.withColumn('exploded', explode(col('split')))\
.drop('deal_id', 'split')\
.withColumnRenamed('exploded', 'deal_id')
df_a.join(df_b, on = 'deal_id', how = 'left_outer')\
.show(10, False)
和预期结果
+-------+---------+---------+
|deal_id|deal_name|deal_type|
+-------+---------+---------+
|613760 |ABCDEFGHI|Direct De|
|613740 |TEST123 |Direct |
|598946 |OMG |In |
+-------+---------+---------+