正如标题清楚地描述的那样,我的简单CNN模型的准确性不受超参数的影响,甚至不受Dropout
和MaxPooling
等图层的影响。我使用Keras
实现了该模型。这种奇怪情况背后的原因可能是什么?我在下面的代码中添加了相关部分:
input_dim = X_train.shape[1]
nb_classes = Y_train.shape[1]
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_dim, 1)))
model.add(Dropout(0.5))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(40, activation='relu'))
model.add(Dense(nb_classes, activation='softmax'))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
p.s。输入数据(X_train
和X_test
)包含由Word2Vec
再现的向量。输出为二进制。
编辑:您可以在下面找到样本培训日志:
样本训练日志:
Train on 3114 samples, validate on 347 samples
Epoch 1/10
- 1s - loss: 0.6917 - accuracy: 0.5363 - val_loss: 0.6901 - val_accuracy: 0.5476
Epoch 2/10
- 1s - loss: 0.6906 - accuracy: 0.5369 - val_loss: 0.6896 - val_accuracy: 0.5476
Epoch 3/10
- 1s - loss: 0.6908 - accuracy: 0.5369 - val_loss: 0.6895 - val_accuracy: 0.5476
Epoch 4/10
- 1s - loss: 0.6908 - accuracy: 0.5369 - val_loss: 0.6903 - val_accuracy: 0.5476
Epoch 5/10
- 1s - loss: 0.6908 - accuracy: 0.5369 - val_loss: 0.6899 - val_accuracy: 0.5476
Epoch 6/10
- 1s - loss: 0.6909 - accuracy: 0.5369 - val_loss: 0.6901 - val_accuracy: 0.5476
Epoch 7/10
- 1s - loss: 0.6905 - accuracy: 0.5369 - val_loss: 0.6896 - val_accuracy: 0.5476
Epoch 8/10
- 1s - loss: 0.6909 - accuracy: 0.5369 - val_loss: 0.6897 - val_accuracy: 0.5476
Epoch 9/10
- 1s - loss: 0.6905 - accuracy: 0.5369 - val_loss: 0.6892 - val_accuracy: 0.5476
Epoch 10/10
- 1s - loss: 0.6909 - accuracy: 0.5369 - val_loss: 0.6900 - val_accuracy: 0.5476
答案 0 :(得分:0)
我假设您具有多类分类,对吗?
那么您的损失是不合适的:您应该使用'categorical_crossentropy
'而不是'mean_squared_error
'。
另外,请尝试添加多个Conv + Drop + MaxPool(3套),以清楚地验证网络的健壮性。
答案 1 :(得分:0)
首先,您需要将最后一层更改为
SameSite
您还需要将损失功能更改为
model.add(Dense(1, activation='sigmoid'))