这是我的代码,以便将resnet50模型与此模型(我想在我的数据集上进行训练)结合在一起。我想在代码中冻结resnet50模型的各层(请参见Trainable = false)。 在这里,我要导入resnet 50模型
``
import tensorflow.keras
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
resnet50_imagnet_model = tensorflow.keras.applications.resnet.ResNet50(weights = "imagenet",
include_top=False,
input_shape = (150, 150, 3),
pooling='max')
``
在这里我创建我的模型
```
# freeze feature layers and rebuild model
for l in resnet50_imagnet_model.layers:
l.trainable = False
#construction du model
model5 = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(12, activation='softmax')
]
#Jointure des deux modeles
model_using_pre_trained_resnet50 = tf.keras.Sequential(resnet50_imagnet_model.layers + model5 )
```
最后一行不起作用,并且出现此错误: 层conv2_block1_3_conv的输入0与该层不兼容:输入形状的预期轴-1的值为64,但接收到形状为[无,38、38、256的输入
感谢帮助。
答案 0 :(得分:2)
您也可以像下面一样使用keras的functional API
from tensorflow.keras.applications.resnet50 import ResNet50
import tensorflow as tf
resnet50_imagenet_model = ResNet50(include_top=False, weights='imagenet', input_shape=(150, 150, 3))
#Flatten output layer of Resnet
flattened = tf.keras.layers.Flatten()(resnet50_imagenet_model.output)
#Fully connected layer 1
fc1 = tf.keras.layers.Dense(128, activation='relu', name="AddedDense1")(flattened)
#Fully connected layer, output layer
fc2 = tf.keras.layers.Dense(12, activation='softmax', name="AddedDense2")(fc1)
model = tf.keras.models.Model(inputs=resnet50_imagenet_model.input, outputs=fc2)
另请参阅this question。