我想可视化数学域或区间。同样,我想可视化一个布尔数组。有多个这样的数组,理想情况下,它们要一个放在另一个之上。
我所拥有的是一些数据:在一段100分钟的时间内录制了几张唱片。每个记录仅在部分时间内满足给定条件。我想可视化每个记录为“ True”的时间。一些更简单的变体:
就我而言,每个记录可以是多个间隔的并集。例如:
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
sb.set_context("paper")
times = np.arange(0, 100)
mask1 = (times >= 0) * (times <= 30) + (times >= 70) * (times <= 100)
mask2 = (times >= 20) * (times <= 80)
我可以使用我编写的这两个功能分别绘制每个录音:
def bool2extreme(mask, times) :
"""return xmins and xmaxs for intervals in times"""
binary = 1*mask
slope = np.diff(binary)
extr = (slope != 0)
signs = slope[extr]
mins = list(times[1:][slope==1])
maxs = list(times[:-1][slope==-1])
if signs[0]==-1:
mins = [times[0]] + mins
if signs[-1]==1:
maxs = maxs + [times[-1]]
return mins, maxs
def plot_interval(mask, times, y=0, color='k', ax=None) :
if ax==None:
print('None')
ax = plt.gca()
xmins, xmaxs = bool2extreme(mask, times)
for xmin, xmax in zip(xmins, xmaxs):
ax.plot([xmin, xmax], [y,y], lw=6, color=color)
return ax
我的问题是控制各个间隔之间的垂直间隔。确实,当我绘制其中一个时,会有一个我不想要的垂直轴。即使我将其可见性设置为False,它也存在并占用空间。因此,当我将每个记录放在不同的子图中时,它们之间的垂直间距太大:
masks = [mask1, mask2]
labels = ['domain1', 'domain2']
n_plots = len(masks)
fig, axs = plt.subplots(n_plots, sharex=True)
for i, mask in enumerate(masks) :
axs[i] = plot_interval(mask, times, ax=axs[i])
axs[-1].set_xlabel('Time (min)')
sb.despine()
我尝试过的另一种选择:将所有间隔都设置在同一轴上,但是使用不同的y值。但是间隔之间的垂直间距问题仍然存在。
masks = [mask1, mask2]
labels = ['domain1', 'domain2']
n_plots = len(masks)
fig, ax = plt.subplots(sharex=True)
for i, mask in enumerate(masks) :
ax = plot_interval(mask, times, y=i, ax=ax)
ax.set_xlabel('Time (min)')
ax.set_yticks(range(n_plots))
ax.set_yticklabels(labels)
ax.grid(axis="x")
sb.despine(left=True)
如何控制这些间隔之间的垂直间隔?
答案 0 :(得分:1)
一些想法:
height/num_axes
隔开ax.yaxis.set_visible(False)
隐藏y轴上的刻度线ax.spines['left'].set_color('None')
使y轴的书脊不可见ax.spines['bottom'].set_position(('data', 0))
将x轴放置在y=0
高度ax.tick_params(labelbottom=True)
,以便在所有子图上(而不是仅在最后一个子图上)为xticks贴上标签。(-1.5, .5)
,以便可以适当选择厚度。在下面留出更多空间来放置xtick的标签ax.tick_params(which='both', direction='in')
,以在上方(而不是市长和次要的滴答声)上方获得刻度线要在左侧添加标签,以下内容对我有用:
# ax.yaxis.set_visible(False) # removed, as it also hides the ylabel
ax.set_ylabel('my ylabel', rotation=0, ha='right', labelpad=10)
ax.set_yticks([]) # to remove the ticks, the spine was already removed
在演示代码中,添加了更多xticks和末尾的某些类型的箭头。演示中有7个遮罩,以更好地查看轴之间的距离效果。尝试使轴尽可能接近,0.4英寸的距离似乎可行。 (bool2extreme
函数未更改,因为它与用作输入的格式密切相关。)
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle, Polygon
import matplotlib.ticker as plticker
import seaborn as sbs
sbs.set_context("paper")
times = np.arange(0, 101)
num_masks = 7
masks = [np.zeros_like(times, dtype=bool) for _ in range(num_masks)]
for i in range(num_masks):
for j in range(50):
masks[i] += (times >= (i+3)*j) * (times <= (i+3)*j+i+1)
masks = masks[::-1] # reverse to get the masks plotted from bottom to top
def bool2extreme(mask, times) :
"""return xmins and xmaxs for intervals in times"""
binary = 1*mask
slope = np.diff(binary)
extr = (slope != 0)
signs = slope[extr]
mins = list(times[1:][slope==1])
maxs = list(times[:-1][slope==-1])
if signs[0]==-1:
mins = [times[0]] + mins
if signs[-1]==1:
maxs = maxs + [times[-1]]
return mins, maxs
def plot_interval(mask, times, xlim=None, y=0, thickness=0.4, color='k', ax=None):
if ax is None:
ax = plt.gca()
ax.yaxis.set_visible(False)
ax.spines['left'].set_color('None')
ax.spines['right'].set_color('None')
ax.spines['top'].set_color('None')
ax.spines['bottom'].set_position(('data', 0))
ax.tick_params(labelbottom=True) # to get tick labels on all axes
# ax.tick_params(which='both', direction='in')` # tick marks above instead below the axis
ax.xaxis.set_major_locator(plticker.MultipleLocator(base=10)) # major ticks in steps of 10
ax.xaxis.set_minor_locator(plticker.MultipleLocator(base=1)) # minor ticks in steps of 1
ax.set_ylim(-1.5,.5)
if xlim is None:
xlim = (times[0]-0.9, times[-1]+0.9)
ax.set_xlim(xlim)
xmins, xmaxs = bool2extreme(mask, times)
for xmin, xmax in zip(xmins, xmaxs):
#ax.add_patch(Rectangle((xmin, y-thickness), xmax-xmin, 2*thickness, linewidth=0, color=color))
ax.add_patch(Rectangle((xmin, y), xmax-xmin, thickness, linewidth=0, color=color))
triangle1 = [(xlim[0]-0.5, y), (xlim[0], y-thickness), (xlim[0], y+thickness)]
ax.add_patch(Polygon(triangle1, linewidth=0, color='black', clip_on=False))
triangle2 = [(xlim[1]+0.5, y), (xlim[1], y-thickness), (xlim[1], y+thickness)]
ax.add_patch(Polygon(triangle2, linewidth=0, color='black', clip_on=False))
return ax
n_plots = len(masks)
dist_between_axis_in_inches = 0.4
fig, axs = plt.subplots(n_plots, sharex=True, figsize=(10, dist_between_axis_in_inches*len(masks)))
for i, mask in enumerate(masks) :
axs[i] = plot_interval(mask, times, xlim=(times[0]-0.5, times[-1]+0.5), ax=axs[i], color='lime')
axs[-1].set_xlabel('Time (min)')
plt.show()
轴靠在一起的结果:
PS:This post包含有关添加箭头的更多建议。