我有一个包含6列'Weight'(float),'Gender'(0或1(int)),'Height'(float),'Metabolism'(0,1,2,3( int)),'Psychology'(0,1,2,3,4,5,6(int)),而我们必须预测的列是'Age'(int)。我必须使用sklearn的VotingClassifier做到这一点。应用单次热编码后,我以这种方式拆分了数据。
X_train, X_test, y_train, y_test = train_test_split(X_hot, y, test_size=0.25, random_state=1)
我将这4种算法用于分类器。
gbm = GradientBoostingRegressor(loss='huber',n_estimators=5000,max_features="sqrt",subsample=0.9)
gbm.fit(X = X_train,y = np.log1p(y_train))
ada = AdaBoostClassifier(n_estimators=2000)
ada.fit(X = X_train,y = y_train)
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
和knn也是。现在,这部分工作正常了
from sklearn.ensemble import VotingClassifier
estimators=[('knn', knn_best), ('ada', ada), ('log_reg', log_reg), ('gbm', gbm)]
new_ensemble = VotingClassifier(estimators, voting='hard')
new_ensemble.fit(X_train, y_train)
下面是显示错误的部分
y_pred = new_ensemble.predict(X_test)
我尝试将所有内容都转换为从X_train,X_test,y_train,y_test浮动,但是它没有任何改变。我将所有内容都更改为int,但同样发生了同样的错误。为什么该行显示错误?我真的很困惑。
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-37-86a04c2ceff1> in <module>
----> 1 y_pred = new_ensemble.predict(X_test)
~\AppData\Roaming\Python\Python37\site-packages\sklearn\ensemble\voting_classifier.py in predict(self, X)
237 lambda x: np.argmax(
238 np.bincount(x, weights=self._weights_not_none)),
--> 239 axis=1, arr=predictions)
240
241 maj = self.le_.inverse_transform(maj)
~\Anaconda3\lib\site-packages\numpy\lib\shape_base.py in apply_along_axis(func1d, axis, arr, *args, **kwargs)
378 except StopIteration:
379 raise ValueError('Cannot apply_along_axis when any iteration dimensions are 0')
--> 380 res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs))
381
382 # build a buffer for storing evaluations of func1d.
~\AppData\Roaming\Python\Python37\site-packages\sklearn\ensemble\voting_classifier.py in <lambda>(x)
236 maj = np.apply_along_axis(
237 lambda x: np.argmax(
--> 238 np.bincount(x, weights=self._weights_not_none)),
239 axis=1, arr=predictions)
240
TypeError: Cannot cast array data from dtype('float64') to dtype('int32') according to the rule 'safe'
答案 0 :(得分:0)
尝试对 VotingClassifier 使用参数 voting ='soft'。我认为通过 voting ='hard',所有模型都希望使用整数标签,但是会从回归变量中获得一些浮点值。使用“软”,它会将模型结果作为概率,而概率当然是浮点数。