与其他DP问题不同,我无法将以下问题分解为重叠的子问题,因此DP解决方案对我而言并不直观。
https://www.geeksforgeeks.org/maximum-profit-by-buying-and-selling-a-share-at-most-k-times/
我看到到处都有解决问题的自下而上的方法。我想使用自上而下的方法解决它。像其他任何问题一样,我想首先提出递归解决方案,然后使用DP数组将结果缓存为重叠。我无法使其重叠,因此无法使DP直观。请帮助我将其转换为DP
以下是我的递归解决方案。
private int getMaxProfit(ArrayList<Integer> input, int K) {
return getMaxProfit(input, 0, 0, 0, K, K, 0);
}
private int getMaxProfit(ArrayList<Integer> input, int i, int buy, int sell, int bk, int sk, int bal) {
if (i == input.size() || (bk == 0 && sk == 0)) { // k times Buying, selling done or we reached end
return buy > sell ? 0 : sell - buy;
}
/** If Buying for k times done **/
if (bk == 0) {
int neutral = getMaxProfit(input, i + 1, buy, sell, bk, sk, bal + 1);
int maxProfitBySell = getMaxProfit(input, i + 1, buy, sell + input.get(i), bk, sk - 1, bal - 1);
return Math.max(neutral, maxProfitBySell);
}
/** If Selling for k times done **/
if (sk == 0) {
int neutral = getMaxProfit(input, i + 1, buy, sell, bk, sk, bal + 1);
int maxProfitByBuy = getMaxProfit(input, i + 1, buy + input.get(i), sell, bk - 1, sk, bal + 1);
return Math.max(neutral, maxProfitByBuy);
}
/** we need to buy one stock before we sell it **/
if (bal == 0) {
return getMaxProfit(input, i + 1, buy + input.get(i), sell, bk - 1, sk, bal + 1);
}
int maxProfitByBuy = getMaxProfit(input, i + 1, buy + input.get(i), sell, bk - 1, sk, bal + 1); // buy
int neutral = getMaxProfit(input, i + 1, buy, sell, bk, sk, bal + 1); // dont buy or sell
int maxProfitBySell = getMaxProfit(input, i + 1, buy, sell + input.get(i), bk, sk - 1, bal - 1); //sell
return Math.max(neutral, Math.max(maxProfitByBuy, maxProfitBySell));
}
答案 0 :(得分:1)
要转换为自下而上的方法,如果递归方法首先自上而下地制定(这意味着所调用的参数正在减少),并且在参数状态之间具有明确的关联,则可以帮助更直观,更轻松和结果。由于此问题中的事务是顺序的,每个事务都由两部分组成,因此,我们可以通过将K加倍并使用其当前奇偶性来指示事务状态来实现此目的。
此处使用问题描述中共享的Geeks-for-Geeks链接中的输入示例,在JavaScript中自上而下进行了注释。 (请注意,此处的“卖出”会在其各自的“购买”之前进行检查。)
// Odd k means the (k/2)th buy was completed
function f(A, k, i=A.length-1){
// All transactions were done
if (k == 0)
return 0
// We're at the start of the price list
// so if we are in the middle of a transaction,
// force the associated "buy"
if (i == 0)
return k & 1 ? -A[0] : 0
// Current k is odd so we have completed a "sell" -
// choose to record the associated "buy" or skip
if (k & 1){
return Math.max(
-A[i] + f(A, k - 1, i - 1), // buy
f(A, k, i - 1) // skip
)
// Current k is even so we have completed a "buy" or
// are "at rest" - choose to record a new "sell" or skip
} else {
return Math.max(
A[i] + f(A, k - 1, i - 1), // sell
f(A, k, i - 1) // skip
)
}
}
var inputs = [
[[10, 22, 5, 75, 65, 80], 2], // 87
[[12, 14, 17, 10, 14, 13, 12, 15], 3], // 12
[[100, 30, 15, 10, 8, 25, 80], 3], // 72
[[90, 80, 70, 60, 50], 1] // 0
]
for (let [A, K] of inputs){
console.log(`A: ${A}, K: ${K}`)
console.log(f(A, 2*K)) // call with doubled K
}
现在是自下而上的转换,几乎完全相同(O(n2k) = O(nk)
):
// Bottom-up
function f(A, k){
let M = new Array(A.length)
for (let i=0; i<A.length; i++)
M[i] = new Array(2*k + 1).fill(0)
// Base case - force buy
for (let j=1; j<=2*k; j+=2)
M[0][j] = -A[0]
for (let i=1; i<A.length; i++){
for (let j=1; j<=2*k; j++){
if (j & 1){
M[i][j] = Math.max(
-A[i] + M[i-1][j-1], // buy
M[i - 1][j]
)
} else {
M[i][j] = Math.max(
A[i] + M[i-1][j-1], // sell
M[i-1][j]
)
}
}
}
return M[A.length-1][2*k]
}
var inputs = [
[[10, 22, 5, 75, 65, 80], 2], // 87
[[12, 14, 17, 10, 14, 13, 12, 15], 3], // 12
[[100, 30, 15, 10, 8, 25, 80], 3], // 72
[[90, 80, 70, 60, 50], 1] // 0
]
for (let [A, K] of inputs){
console.log(`A: ${A}, K: ${K}`)
console.log(f(A, K))
}
答案 1 :(得分:0)
这是非递归非DP解决方案。时间复杂度-O(n)。
int calculateMaxProfit(int[] stockPrice, int maxTransactionAllowed)
{
int j=0;
int maxLen = stockPrice.length ;
int profit = 0;
int transactionCount = 1;
int buy = -1;
int sell = -1;
while( (j + 1 < maxLen - 1 && transactionCount <= maxTransactionAllowed) )
{
// find lowest price to buy before price goes up again
while(j+1 < maxLen && ( stockPrice[j+1] < stockPrice[j]))
{
j++;
}
// In case of last allowed transaction get minimum of the prices yet to be traversed
if( transactionCount == maxTransactionAllowed) {
if( stockPrice[buy] >= stockPrice[j]){
buy = j;
}
}else{
buy = j;
}
// find highest price to sell before a downward trend
while(j+1 < maxLen && ( stockPrice[j+1] > stockPrice[j]) )
{
j++;
}
// In case of last allowed transaction get max of the prices yet to be traversed
if( transactionCount == maxTransactionAllowed){
if( stockPrice[j] >= stockPrice[sell] ){
sell = j;
}
}else {
sell = j;
}
if( j+1 < maxLen && transactionCount < maxTransactionAllowed )
{
profit += stockPrice[sell] - stockPrice[buy];
buy = j+1;
sell = j+1;
transactionCount++;
}
}
profit += stockPrice[sell] - stockPrice[buy];
return profit;
}