对于许多算法(例如SVD),现成的内置函数为:
predictions = algo.fit(trainset).test(testset)
-打印测试集的预测收视率得分(因此,对于用户已经给出收视率的电影而言)
predictions = algo.predict(uid, iid)
-预测uid的iid评分得分
但是我该如何为用户打印top N
推荐的电影(即使该用户尚未看到/给某些电影定级)。我已经尝试过:"algo.fit(trainset).test(data)"
,但是却给我错误?
我也曾尝试使用KNN来打印用户的k nearest neighbors
在惊喜包示例中,它具有u.item文件,但是如果我想使用自己的数据(一个具有uid,iid和rating的表),如何计算用户的"raw id"
和一个项目?
答案 0 :(得分:0)
此代码段已共享from Surprise Documentation FAQ,可能会有所帮助。
from collections import defaultdict
from surprise import SVD
from surprise import Dataset
def get_top_n(predictions, n=10):
"""Return the top-N recommendation for each user from a set of predictions.
Args:
predictions(list of Prediction objects): The list of predictions, as
returned by the test method of an algorithm.
n(int): The number of recommendation to output for each user. Default
is 10.
Returns:
A dict where keys are user (raw) ids and values are lists of tuples:
[(raw item id, rating estimation), ...] of size n.
"""
# First map the predictions to each user.
top_n = defaultdict(list)
for uid, iid, true_r, est, _ in predictions:
top_n[uid].append((iid, est))
# Then sort the predictions for each user and retrieve the k highest ones.
for uid, user_ratings in top_n.items():
user_ratings.sort(key=lambda x: x[1], reverse=True)
top_n[uid] = user_ratings[:n]
return top_n
# First train an SVD algorithm on the movielens dataset.
data = Dataset.load_builtin('ml-100k')
trainset = data.build_full_trainset()
algo = SVD()
algo.fit(trainset)
# Than predict ratings for all pairs (u, i) that are NOT in the training set.
testset = trainset.build_anti_testset()
predictions = algo.test(testset)
top_n = get_top_n(predictions, n=10)
# Print the recommended items for each user
for uid, user_ratings in top_n.items():
print(uid, [iid for (iid, _) in user_ratings])