我有一堆Python脚本来运行一些数据科学模型。这需要花费相当长的时间,并且加快速度的唯一方法是使用多处理。为此,我使用了joblib
库,它确实运行良好。但是,不幸的是,这使日志混乱,并且控制台的输出也出现了乱码(但是,意料之中的是),因为所有进程同时转储了各自的输出。
我对使用logging
库是陌生的,并遵循了一些其他的答案以尝试使其正常工作。我正在使用8个核心进行处理。使用SO上的答案,我写出了日志文件,并希望每次迭代有8个新文件。但是,它在第一次迭代时创建了8个文件,并且每个循环仅写入/追加到这8个文件中。这有点不方便,因此我进行了更多探索,发现了loguru
和logzero
。虽然它们都涵盖了使用multiprocessing
的示例,但都没有显示如何与joblib
一起使用。这是我到目前为止的内容:
run_models.py
import math
import multiprocessing
import time
from datetime import datetime
from loguru import logger
import pandas as pd
import psutil
from joblib import Parallel, delayed
import helper
import log
import prep_data
import stock_subscriber_data
import train_model
def get_pred(cust_df, stock_id, logger):
logger.info('--------------------------------Stock loop {}-------------------------------'.format(stock_id))
cust_stockid_df = stock_subscriber_data.get_stockid_data(cust_df, stock_id)
weekly_timeseries, last_date, abn_df = prep_data.prep(cust_stockid_df, logger)
single_row_df = stock_subscriber_data.get_single_row(cust_df, stock_id)
stock_subscriber_data.write_data(abn_df, 't1')
test_y, prd = train_model.read_train_write(cust_df, stock_id, weekly_timeseries, last_date, logger)
return True
def main():
cust_df = stock_subscriber_data.get_data()
cust_df = helper.clean_data(cust_df)
stock_list = cust_df['intStockID'].unique()
max_proc = max(math.ceil(((psutil.virtual_memory().total >> 30) - 100) / 50), 1)
num_cores = min(multiprocessing.cpu_count(), max_proc)
logger.add("test_loguru.log", format="{time} {level}: ({file}:{module} - {line}) >> {message}", level="INFO", enqueue=True)
Parallel(n_jobs=num_cores)(delayed(get_pred)(cust_df, s, logger) for s in stock_list)
if __name__ == "__main__":
main()
train_model.py
import math
from datetime import datetime
from itertools import product
from math import sqrt
import pandas as pd
from keras import backend
from keras.layers import Dense
from keras.layers import LSTM
from keras.models import Sequential
from numpy import array
from numpy import mean
from pandas import DataFrame
from pandas import concat
from sklearn.metrics import mean_squared_error
import helper
import stock_subscriber_data
# bunch of functions here that don't need logging...
# walk-forward validation for univariate data
def walk_forward_validation(logger, data, n_test, cfg):
#... do stuff here ...
#... and here ...
logger.info('{0:.3f}'.format(error))
return error, model
# score a model, return None on failure
def repeat_evaluate(logger, data, config, n_test, n_repeats=10):
#... do stuff here ...
#... and here ...
logger.info('> Model{0} {1:.3f}'.format(key, result))
return key, result, best_model
def read_train_write(data_df, stock_id, series, last_date, logger):
#... do stuff here ...
#... and here ...
logger.info('done')
#... do stuff here ...
#... and here ...
# bunch of logger.info() statements here...
#
#
#
#
#... do stuff here ...
#... and here ...
return test_y, prd
当一次只有一个进程时,这很好用。但是,在多进程模式下运行时,出现_pickle.PicklingError: Could not pickle the task to send it to the workers.
错误。我究竟做错了什么?我该如何补救?我不介意切换到loguru
或logzero
之外的其他东西,只要我可以创建一个具有连贯日志的文件,甚至可以创建n
个文件,每个文件都包含joblib
的每次迭代。
答案 0 :(得分:0)
我通过修改run_models.py
使它起作用。现在,每个循环有一个日志文件。这会创建很多日志文件,但是它们都与每个循环相关,并且不会混乱。我想一次只一步。这是我所做的:
run_models.py
import math
import multiprocessing
import time
from datetime import datetime
from loguru import logger
import pandas as pd
import psutil
from joblib import Parallel, delayed
import helper
import log
import prep_data
import stock_subscriber_data
import train_model
def get_pred(cust_df, stock_id):
log_file_name = "log_file_{}".format(stock_id)
logger.add(log_file_name, format="{time} {level}: ({file}:{module} - {line}) >> {message}", level="INFO", enqueue=True)
logger.info('--------------------------------Stock loop {}-------------------------------'.format(stock_id))
cust_stockid_df = stock_subscriber_data.get_stockid_data(cust_df, stock_id)
weekly_timeseries, last_date, abn_df = prep_data.prep(cust_stockid_df, logger)
single_row_df = stock_subscriber_data.get_single_row(cust_df, stock_id)
stock_subscriber_data.write_data(abn_df, 't1')
test_y, prd = train_model.read_train_write(cust_df, stock_id, weekly_timeseries, last_date, logger)
return True
def main():
cust_df = stock_subscriber_data.get_data()
cust_df = helper.clean_data(cust_df)
stock_list = cust_df['intStockID'].unique()
max_proc = max(math.ceil(((psutil.virtual_memory().total >> 30) - 100) / 50), 1)
num_cores = min(multiprocessing.cpu_count(), max_proc)
Parallel(n_jobs=num_cores)(delayed(get_pred)(cust_df, s) for s in stock_list)
if __name__ == "__main__":
main()
答案 1 :(得分:0)
因此将 loguru 与 joblib 结合使用的正确方法是将后端更改为多处理。
from loguru import logger
from joblib import Parallel, delayed
from tqdm.autonotebook import tqdm
logger.remove()
logger.add(sys.stdout, level = 'INFO', enqueue=True)
logger.info('test')
logger.debug('should not appear')
def do_thing(i):
logger.info('item %i' %i)
logger.debug('should not appaear')
return None
Parallel(n_jobs=4, backend='multiprocessing')(
delayed(do_thing)(i)
for i in tqdm(range(10))
)
Parallel(n_jobs=4)(
delayed(do_thing)(i)
for i in tqdm(range(10))
)
第一个并行调用有效。第二个得到你之前提到的老问题