我的VGG预训练模型显示出奇怪的输出形状,但是训练得非常好,效果非常好。错了吗还是我可以使用的东西。 在模型输入中,无表示什么?
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) (None, None, None, 3) 0
_________________________________________________________________
block1_conv1 (Conv2D) (None, None, None, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, None, None, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, None, None, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, None, None, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, None, None, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, None, None, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, None, None, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, None, None, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, None, None, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, None, None, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, None, None, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, None, None, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, None, None, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, None, None, 512) 0
_________________________________________________________________
global_average_pooling2d_12 (None, 512) 0
_________________________________________________________________
dense_23 (Dense) (None, 512) 262656
_________________________________________________________________
dropout_11 (Dropout) (None, 512) 0
_________________________________________________________________
dense_24 (Dense) (None, 4) 2052
答案 0 :(得分:2)
None
形状意味着它可以适应输入。
这样做,您可以在不同大小的图像上运行网络。
输出也将取决于输入大小。您将获得较大形状的输出以获取较大的图像。当然,通常我们会在最后有一个密集层,将所有输入汇总在一起以提供损失函数。