使用张量流进行对象检测时,为什么平均精度和平均召回率很低?

时间:2019-12-19 02:59:57

标签: python tensorflow object-detection

我使用此link来学习Windows 10上的对象检测。

我使用anaconda(python3.6),tensorflow 1.12.0。

我准备了400张照片,并将它们分为两类(石头和汽车)。

然后我使用此命令进行训练:

  

cd E:\ test \ models-master \ research \ object_detection

     

python model_main.py   --pipeline_config_path = training / ssd_mobilenet_v1_coco.config --model_dir = training / --num_train_steps = 10000

ssd_mobilenet_v1_coco.config中的内容:

# SSD with Mobilenet v1 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  ssd {
    num_classes: 2
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v1'
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }
    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
  batch_size: 10
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
  #fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
  #from_detection_checkpoint: true
  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 1000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
    input_path:'data/train.record'
  }
  label_map_path:'data/side_vehicle.pbtxt'
}

eval_config: {
  num_examples: 8000
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: 'data/test.record'
  }
  label_map_path: 'data/side_vehicle.pbtxt'
  shuffle: false
  num_readers: 1
}

现在它已经训练了6000步,但是平均精度和平均召回率不接近1,您可以从以下图片中看到它: enter image description here

pycharm终端输出以下信息:

enter image description here

如何提高平均准确度和平均召回率?

1 个答案:

答案 0 :(得分:0)

我知道问题出在哪里。

首先,图片太少,我将图片数量增加到4000张。

第二,我应该使用微调。我在管道配置文件ssd_mobilenet_v1_coco.config中添加了4部分:

  fine_tune_checkpoint: "ssd_inception_v2_coco_2018_01_28/model.ckpt"
  fine_tune_checkpoint_type: "detection"
  from_detection_checkpoint: true
  load_all_detection_checkpoint_vars: true

再次检查标签以查看是否有任何标签错误的图片。检查非常重要。

然后,平均精度和平均召回率提高了。

如果mAP达到1,那不是最好的。如果mAP达到0.48,那将非常强大。